
www.manaraa.com

www.manaraa.com

Security Engineering
for Service-Oriented Architectures

www.manaraa.com

Michael Hafner • Ruth Breu

Security Engineering
for Service-Oriented
Architectures

123

www.manaraa.com

Michael Hafner
Ruth Breu

Universität Innsbruck
Inst. Informatik
FG Quality Engineering
Technikerstr. 21a
6020 Innsbruck
Austria
m.hafner@uibk.ac.at
ruth.breu@uibk.ac.at

ISBN: 978-3-540-79538-4 e-ISBN: 978-3-540-79539-1

Library of Congress Control Number: 2008933600

ACM Computing Classification (1998): D.2, H.3, H.4

©c 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: KünkelLopka GmbH, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

www.manaraa.com

To Jakob

To Korbinian, Magdalena, and Felizitas

www.manaraa.com

Preface

The growing popularity of Service Oriented Architectures is mainly due to
business and technology trends that have crystallized over the past decade.

On the business side, companies struggle to survive in a competitive en-
vironment that pushes them towards a tighter integration into an industry’s
value chain, to outsource non core business operations or to constantly re-
engineer business processes. These challenges boosted the demand for scal-
able IT-solutions, with efforts ultimately resulting in a flexible architectural
paradigm – Service Oriented Architectures.

On the technical side, middleware standards, technologies and architec-
tures based on XML and Web services as well as their security extensions have
matured to a sound technology base that guarantees interoperability across
enterprise and application boundaries – a prerequisite to inter-organizational
applications and workflows.

While the principles and concepts of Service Oriented Architectures may
look evident and cogent from a conceptual perspective, the realization of inter-
organizational workflows and applications based on the paradigm “Service
Oriented Architecture” remains a complex task, and, all the more when it
comes to security, the implementation is still bound to low-level technical
knowledge and hence error-prone.

The number of books and publications offering implementation-level cov-
erage of the technologies, standards and specifications as required by technical
developers looking for guidance on how to “add” security to service oriented
solutions based on Web services and XML technology is already considerable
and ever growing. The present book sets a different focus. Based on the par-
adigm of Model Driven Security, it shows how to systematically design and
realize security-critical applications for Service Oriented Architectures.

In this book we pursue two objectives. First, we show how systems and
security engineering go hand in hand and are integrated right from the be-
ginning in the requirements elicitation and the design phase – thereby guar-
anteeing a security implementation more closely aligned to the requirements
as specified within the application context. Second, we apply the principles

www.manaraa.com

VIII Preface

of Model Driven Security to Service Oriented Architectures. Model Driven
Security is an engineering paradigm that aims at the automatic generation of
executable software for target architectures. The automation of security engi-
neering through proven and reliable mechanisms guarantees correctness and
facilitates an agile and flexible approach to the implementation and high-level
management of security-critical systems. We base our approach for Model
Driven Security on the ProSecO method for requirements engineering and the
Sectet-framework for the model-driven configuration and management of
target infrastructures.

Contribution

The contribution of this book consists in the systematic elaboration of a con-
ceptual framework for an extensible domain architecture for Model Driven
Security. The aim is to provide a sound methodical and technical basis for the
engineering of security-critical SOA scenarios.

The starting point is the business level view where functional as well as
security requirements are specified in models in the language of the domain
expert – bare of any technical details as much as possible. Following the prin-
ciples of Model Driven Security, models are transformed into executable arte-
facts. They configure target architectures designed and implemented according
to best practices in security engineering and integrating proven technical so-
lutions. Model Driven Security thereby improves traceability of security re-
quirements, starting at the business level accross levels of abstraction down
to their technical realization.

Target Audience

This book addresses IT professionals from industry interested in the design
and realization of security-critical applications based on Service Oriented Ar-
chitectures. SOA as well as application security engineering are broad sub-
ject matters. As can be seen by the numerous publications in either field,
both deserve special attention. This book presents a synthesis of various best
practices, standards and technologies from both fields, and – guided by the
engineering principles of Model Driven Security – shows how to realize SOA
Security.

The book will therefore be useful to software architects who are inter-
ested in

1. application-level security issues in the context of Service Oriented Archi-
tectures,

2. how to identify security requirements during systems engineering,
3. howtomodel security-critical business applicationsand inter-organizational

workflows,

www.manaraa.com

Preface IX

4. how to realize security-critical applications and workflows targeting a Web
services based reference architecture,

5. how to leverage principles and techniques of Model Driven Security for a
systematic and correct implementation of a given specification.

Readers are expected to have basic knowledge about UML modeling tools
and techniques, about the major principles behind OMG’s Model Driven Ar-
chitecture and some understanding of XML and Web services technologies.

Organization

Here is the way we organized this book. Part I presents the background to our
work. Chapter 1 is a general introduction to security issues relevant to the en-
gineering of Service Oriented Architecture. We give an overview of paradigms,
technologies and standards that represent the technical and conceptual foun-
dation of the Sectet-framework in Chapter 2 and introduce basic notions and
concepts of security – streamlined towards SOA – in Chapter 3. We elaborate
a frame of reference for terms and concepts related to Model Driven Software
Engineering and its core concept the Domain Architecture in Chapter 4. In
Part II, we show how to apply the concepts of Model Driven Security to a
Problem Domain defined as “security-critical inter-organizational workflows”.
A motivating case study from e-government is introduced in Chapter 5. It will
serve as a running example throughout the book and will be the object of a
method for Security Analysis in Chapter 6. In Chapter 7, we build the first
part of our Domain Architecture, the Domain Specific Language. The target
Sectet-Reference Architecture for the enforcement of Basic Security Poli-
cies of the Sectet-Domain Architecture is detailed in in Chapter 8. Model
Transformations complete the Domain Architecture; they are presented in
Chapter 9. A set of tools for stakeholders planning the realization of an inter-
organizational workflow is introduced in Chapter 10. We sketch the extensions
to the existing structure of the Domain Specific Language to model Advanced
Security Policies in Chapter 11. Part III consists of a single Chapter and
demonstrates how to apply the Sectet-framework to a real-life scenario from
healthcare.

Acknowledgments

We would like to express our deepest gratitude to all the people who con-
tributed to the realization of this work. They are the many colleagues, stu-
dents and researchers who contributed to this book through their work in
the two projects – Sectino and health@net: Berthold Agreiter, Muhammad
Alam, Michael Breu, Frank Innerhofer-Oberperfler, Basel Katt, Markus Mit-
terer, Memon Mukhtiar, Matthias Farwick, Stefan Unterthiner. We are also
indebted to our colleagues Barbara Weber and Joanna Chimiak-Opoka at
Quality Engineering for various comments, also to Bernhard Rumpe for fruit-
ful feedback to the scientific work this book is based upon. Very special thanks

www.manaraa.com

X Preface

go to our co-operation partners from industry. Without them our ideas would
never have found the ground to grow and stand the test of reality: Thomas
Schabetsberger, Richard Mair, and Florian Wozak from health@net and An-
drea Nowak and Mirad Zadic from ARCS Seibersdorf Research GmbH. The
excellent cooperation with Ralf Gerstner from the Springer-Verlag is gratefully
acknowledged.

This work was financially supported in part by the Fonds zur Forderung¨
der wissenschaftlichen Forschung (FWF), the Österreichische Forschungs-
forderungsgesellschaft (FFG), the ARCS Seibersdorf Research GmbH, andff¨
the Tiroler Zukunftsstiftung; the latter contributed through the project
health@net. The support is greatly appreciated.

Innsbruck, Michael Hafner
February 2008 Ruth Breu

www.manaraa.com

Contents

Part I The Basics of SOA Security Engineering

1 Introduction . 3
1.1 Service Oriented Architecture . 3

1.1.1 Interoperability and Securitiy Issues in SOA 4
1.1.2 Model Driven Security Engineering 5

1.2 Problem Description . 6
1.3 Contribution . 7

1.3.1 ProSecO . 8
1.3.2 Sectet . 8

1.4 Related Work . 9
1.4.1 Model Driven Security . 9
1.4.2 Formal Systems Engineering . 10
1.4.3 Pattern-based Approaches . 11
1.4.4 Tools and Frameworks . 11
1.4.5 Workflow Management . 12

2 SOA - Standards & Technology . 15
2.1 Service Oriented Architectures . 15

2.1.1 Principles of SOA . 16
2.1.2 Motivating Example . 16

2.2 Web Services . 17
2.2.1 Basic Definition . 18
2.2.2 Service Invocation . 18
2.2.3 Service Description and Discovery 20

2.3 The Web Services Specification Stack . 20
2.3.1 Transport Layer . 21
2.3.2 Messaging Layer . 21
2.3.3 Description Layer . 22
2.3.4 Discovery Layer . 22
2.3.5 Quality of Service Layer . 22

www.manaraa.com

XII Contents

2.3.6 Web Services Security Standards . 23
2.3.7 Services Composition Layer . 23

3 Basic Concepts of SOA Security . 27
3.1 What Is (SOA) Security? . 27
3.2 Security Objectives . 29
3.3 Security Policies . 30

3.3.1 Basic Security Policies . 31
3.3.2 Policy Models . 32
3.3.3 Advanced Security Policies . 36

3.4 Security Analysis . 38
3.4.1 Security Requirements . 38
3.4.2 Attacks . 38

3.5 Web Services Security Standards . 41
3.5.1 Confidentiality, Integrity, and Authenticity 41
3.5.2 Authentication . 42
3.5.3 Advanced Web Services Security Standards 44

4 Domain Architectures . 47
4.1 Model Driven Software Development . 47

4.1.1 The Unified Modeling Language . 48
4.1.2 The Meta-Object Facility . 48
4.1.3 Model Driven Software Development 49
4.1.4 Model Driven Architecture . 50
4.1.5 Model Driven Security . 51

4.2 A Definition of Model Driven Software Development 51
4.3 Domain Specific Languages . 52
4.4 The Target Architecture . 54
4.5 Model-(to-model-)to-code Transformation 54
4.6 Domain Architecture . 56
4.7 Framework . 57
4.8 Model Driven Security . 57

4.8.1 Definition . 57
4.8.2 Extensions to the Problem Space . 57

Part II Realizing SOA Security

5 Sectino – A Motivating Case Study from E-Government . . . 65
5.1 Problem Context . 65
5.2 Project Mission . 66
5.3 Expected Benefits . 66
5.4 Scenario Description . 67

5.4.1 Requirements . 68
5.4.2 Security Requirements . 69

5.5 Results . 70

www.manaraa.com

Contents XIII

6 Security Analysis . 71
6.1 Overview . 71

6.1.1 Modularity . 72
6.1.2 Traceability . 73
6.1.3 Model-driven Configuration of Security Services 73
6.1.4 Tight Integration of Functional and Security Aspects . . 73
6.1.5 Security as a Process . 73

6.2 Functional System View . 74
6.2.1 Level of Interaction . 74
6.2.2 Level of Abstraction . 74
6.2.3 Functional Meta-models . 75
6.2.4 Global Functional Meta-model . 75
6.2.5 Local Functional Meta-model . 77

6.3 Security Analysis Process . 79
6.3.1 Security Concepts . 79
6.3.2 The Security Micro-process . 81
6.3.3 Elaborate Functional Model . 82
6.3.4 Define Security Objectives . 82
6.3.5 Identify Dependencies . 83
6.3.6 Security Requirements Engineering 83
6.3.7 Threat and Risk Analysis . 85
6.3.8 Security Control Engineering . 86

6.4 Access Control . 86
6.5 Related Work . 89

6.5.1 Standards and Baseline Protection 89
6.5.2 Security Management . 89
6.5.3 Security Analysis in the Software Process 90
6.5.4 Formal Approaches to Security Requirements

Specification . 90

7 Modeling Security Critical SOA Applications 93
7.1 The Sectet Domain Specific Language . 93

7.1.1 Domain Definition . 93
7.1.2 Global Worklfow . 94
7.1.3 Local Worklfow . 94
7.1.4 Sectet Model Views . 96
7.1.5 Security Policies . 98

7.2 The DSL Meta-models . 100
7.2.1 The Workflow View . 101
7.2.2 The Interface View . 107

7.3 Integrating Security into the DSL . 114

www.manaraa.com

XIV Contents

8 Enforcing Security with the Sectet Reference Architecture 121
8.1 Architectural Blueprint . 121
8.2 Components . 122

8.2.1 Service Components . 123
8.2.2 Security Components . 123
8.2.3 Supporting Security Components . 126

8.3 Communication Protocols . 126
8.3.1 Enforcing Confidentiality and Integrity 127
8.3.2 Enforcing Non-repudiation . 128

8.4 Component Configuration . 130
8.4.1 Inbound Messaging - (Executable Security Policy File) . 131
8.4.2 Outbound Messaging - (Executable Security Policy

Files) . 136
8.4.3 Request for Compliance Check . 138
8.4.4 Response Request for Compliance Check 139
8.4.5 Technology and Standards . 140

9 Model Transformation & Code Generation 141
9.1 Transformations in the Sectet-Framework 141

9.1.1 The Generation of Security Artefacts 141
9.1.2 The Generation of Services Artefacts 142

9.2 Security Transformations . 143
9.2.1 Inbound Policy File . 143
9.2.2 Outbound Policy Files . 144

9.3 Services Transformations . 145
9.3.1 Global Workflow to Local Workflow Translation 146
9.3.2 Global Workflow to WSDL Description 146
9.3.3 Global Workflow to XSD Schema Template 148

9.4 Implementing Transformation . 149
9.4.1 Template Based Transformations . 149
9.4.2 Meta-model Based Transformations 150

10 Software & Security Management . 153
10.1 Tool Chain . 153

10.1.1 Modeling . 153
10.1.2 Code Generation . 154
10.1.3 Build Tools and Integrated Development Environments 155
10.1.4 The Realization Process . 155
10.1.5 The Engineering Process . 156

10.2 The Deployment Process . 157

11 Extending Sectet: Advanced Security Policy Modeling 159
11.1 Motivation . 160
11.2 Extending the DSL . 161

11.2.1 A New Security Objective . 161

www.manaraa.com

Contents XV

11.2.2 Advanced Security Policies . 162
11.2.3 Introducing the RBAC Policy Model 162

11.3 Modeling Policies with Dynamic Constraints 164
11.3.1 Sectet-PL . 164
11.3.2 Static RBAC . 165
11.3.3 Dynamic RBAC . 165
11.3.4 Rights Delegation . 167

11.4 Integrating Sectet-PL into the Sectet- Framework 171
11.4.1 Metamodel Extensions . 171
11.4.2 Sectet-PL - Abstract Syntax . 173

11.5 Extending the Reference Architecture . 174
11.5.1 Access Control, Delegation and Privacy Policies 174
11.5.2 Protocol Extensions . 179
11.5.3 PDP Extensions . 180

11.6 Sectet-PL Transformations . 182
11.7 Modeling Advanced Use Cases with Sectet-PL 182

11.7.1 Break-Glass Policy (BGP) . 182
11.7.2 4-Eyes-Principle . 183
11.7.3 Usage Control (UC) . 183
11.7.4 Qualified Signature . 183

Part III A Case Study from Healthcare

12 health@net – A Case Study from Healthcare 189
12.1 Background . 190

12.1.1 The Electronic Healthcare Record 190
12.1.2 National E-Health Initiatives . 190
12.1.3 Technical Standards for Healthcare 191
12.1.4 The Austrian Data Privacy Law . 191

12.2 health@net . 192
12.2.1 Project Mission . 192
12.2.2 Organizational Setting . 193
12.2.3 Architectural Concept . 194

12.3 health@net – Security Analysis . 198
12.3.1 Introduction . 198
12.3.2 Functional System View . 198
12.3.3 Identification of Security Objectives 200
12.3.4 Engineering of Security Requirements 202
12.3.5 Conclusion . 204

12.4 health@net – Security Concept . 205
12.4.1 Phase 1: Service-level Security . 205
12.4.2 Phase 2a: Static, Process-level Security 206
12.4.3 Phase 2b: Dynamic, Process-level Security 206

12.5 Realizing Security with the Sectet-Framework 207

www.manaraa.com

XVI Contents

12.5.1 Conceptual Background . 207
12.5.2 Model Views . 208

12.6 health@net - Phases 2a & 2b . 212
12.6.1 Use Cases . 212
12.6.2 Security Architecture . 213

Part IV Appendices

A Mapping Tables . 225
A.1 Mapping Table for Inbound Policy File . 226
A.2 Mapping Table for Outbound Policy Files 227
A.3 Mapping Table for BPEL Files . 228
A.4 Mapping Table for BPEL Files (continued) 229
A.5 Mapping Table for WSDL Files . 230

References . 231

Index . 243

www.manaraa.com

Part I

The Basics of SOA Security Engineering

www.manaraa.com

1

Introduction

1.1 Service Oriented Architecture

The paradigm of Service Oriented Architecture (SOA) stands for an architec-
tural concept that caters to the pressing need of today’s companies for a flexi-
ble integration into an industry’s value chain. The participation in a network of
enterprises collaborating to deliver a service – a so-called inter-organizational
workflow – requires a company to couple its internal workflows to those of its
partners. A business producing consumer goods may wait for supplier parts
needed for further processing, a content provider may be waiting for credit
information from the customer’s banking institution before initiating services
delivery. Orders are posted over the internet, maybe even automatically by
the company’s enterprise resource planning system, order confirmations and
invoices are delivered by mail. In a healthcare scenario, a doctor may issue
an electronic prescription for medication and refer a patient to a radiologist
by issuing an electronic referral; in e-government, a company may forward
its financial statement to tax authorities whereas in public procurement the
process of tendering heavily relies on electronic systems.

Every value-adding activity of one actor initiates a flow of information
across domain boundaries: this requires the tight coupling of the processes
of participating businesses in terms of the flow of digital information. Every
time the information is received by the interaction partner, it triggers further
activities in the partner’s internal value creating process.

To facilitate the exchange of information – according to the concept of SOA
– businesses expose well-defined interfaces to their services or applications.
The interaction of geographically distributed information systems over these
standardized communication interfaces realizes the merging of local processes
to an inter-organizational workflow, a “virtual workflow”, that is not neces-
sarily orchestrated centrally and may eventually span over the entire value
chain.

www.manaraa.com

4 1 Introduction

1.1.1 Interoperability and Securitiy Issues in SOA

In order to be able to cooperate over interfaces in such scenarios, the partners
need to establish a common understanding along three strands.

First, there has to be an agreement on the technical underpinning up to a
certain extent. The claim of platform independence always put forward in such
cases has to be understood in relative terms. SOA are independent of program-
ming languages, like Java, C# or C++ used to develop the applications, they
are even independent of the runtime environments hosting the applications
(J2EE, .NET, etc.). Nevertheless, machines still communicate over interfaces,
which need to be described in a machine readable way: messages have to be
understood by both interaction parties, common transport protocols need to
be agreed upon. The ever growing hierarchy of standards - mainly from organi-
zation bodies like the OASIS and the W3C – addresses many inter-operability
issues. It has been commonly agreed upon that the Web services specification
stack corresponds to an efficient way to realize SOA (e.g., [148], [207], and
[81]).

Second, all partners of a network, who want to realize a common busi-
ness goal have to get a common understanding of how to organize the flow
of information (and possibly goods or services). They may have agreed to use
Web services standards and technologies, but still, they need to know which
services they need to offer to their partners in order to comply with the role
in the value creating process chain they agreed to comply with. The common
understanding at this level of abstraction is captured through a“Global Work-
flow”, which stands for a (non-legally) binding contractual agreement between
autonomous business partners.

Third, the security concerns of all stakeholders have to be taken care of.
Without a central instance of control for workflow co-ordination, security en-
forcement becomes a non-trivial task: peers need to formulate and advertise
their securtiy policies in a generally understandable way. Additionally, they
must find a way to enforce them on heterogenous platforms in their own as
well as untrusted security domains. Until a couple of years ago, the slow pace
of adoption of Web services could be explained with the lack of standards and
mechanisms for the integration of security. This was meant to change with
the advent of the Web services security specification stack. Web services secu-
rity standards, like WS-Security, WS-Security Policy, WS-Trust etc., build on
the three basic Web services specifications – SOAP, WSDL, and UDDI – and
provide some guidance for the integration of security into B2B applications
and workflows on top of these (cf. to Chapters 3 and 2). Nevertheless, they
remain close to the technical level and hence almost unintelligible to domain
experts and business analysts alike (e.g., a detailed account is given in [55],
[56], and [106]).

The first point – technical interoperability – cannot be considered a major
issue anymore: most standards have been approved by major organizations
and represent a solid technical basis to build upon. The second point – the

www.manaraa.com

1.1 Service Oriented Architecture 5

engineering of a virtual organization – is a big challenge but of rather practical
relevance. In such cases, Model Driven Software Engineering possibly lends
itself to be an efficent engineering approach. Still, this claim needs to be
validated empirically. The third point – the intricacies of complex security
technologies - addresses the focal point of interest in this book: we propose a
framework facilitating the efficient and effective realization of security-critical
peer-to-peer scenarios based on intuitive models. The framework is based on
an engineering methodology we think the most appropriate to get a grip on
the second and the third issue still open: Model Driven Security Engineering.

1.1.2 Model Driven Security Engineering

The semantic gap between the various notions of security specific to the phases
of the development cycle (requirements analysis, design and implementation)
often leads to a situation where the consideration of security concerns is post-
poned to the end of a software development project, or – at best but with a
similar outcome – the realization is left over to developers with no little or no
expertise in security. Even in case of a satisfying implementation of security
requirements by security experts, usually endorsing a very technical notion
of security narrowed to mechanisms, algorithms and protocols, the costs of
continually adapting workflows to match changing business (and security) re-
quirements are very often too high. Hence business processes remain static,
optimizations are hardly feasible (e.g., [106], [109], and [110]).

When designing and implementing secure or trusted systems that fully
meet security requirements in the context of business level security policy
models, the systematic integration of security aspects into the engineering
process is a key issue (e.g., [31] and [53]). The definition and implementa-
tion of security requirements can be seen as an iterative process that has to
be executed in all phases of the development process (e.g., [55], [56]). Addi-
tionally, it has to take into consideration all architectural layers, constantly
requiring the close cooperation of security experts, software architects and
developers in order to guarantee a correct implementation. Taken that way,
security engineering becomes a complex and costly endeavor.

Model Driven Software Development is particularly suited to cases, where
a sheer unmanageable array of standards and complex technologies require
highly specialized technical knowledge for the implementation (e.g., [132],
[133]). Relying on Model Driven Approaches that integrate best practices,
patterns, and an array of well-known security mechanisms, algorithms and
protocols whose formal correctness was thoroughly proved (e.g., [125]), is a
matter of cost-effectiveness for the development process and a boost to com-
petitiveness by catering for flexible adaptation during run-time. The auto-
matic generation of executable software for target architectures allows for an
efficient and flexible approach to the implementation and high-level manage-
ment of secure inter-organizational workflows [141].

www.manaraa.com

6 1 Introduction

Model Driven Security is an engineering paradigm that specializes Model
Driven Software Development towards information security. Its claim is
twofold: (one) to support the integration of security aspects at an early stage of
the engineering process and (two) to alleviate the software engineer from some
of the crucial problems associated with realizing security solutions aligned with
the original specification (e.g., [106] and [26]).

1.2 Problem Description

The advent of new technologies and paradigms like Web services and Service
Oriented Architecture may create huge opportunities for businesses and in-
dustries but also brings about new challenges that usually cannot be met only
by relying on best practices and proven patterns. In this book, we consider
those problem areas that represent serious challenges to businesses struggling
to keep up with the requirements of a fast changing competitive and technical
environment. These businesses co-operate by forming virtual organizations – a
collaborative but decentralized, peer-to-peer style network [66]. We call these
collaborations inter-organizational workflows (cf. [200], [50], [21], [141]).

Our problem description primarily relies on the exhaustive analysis of case
studies elaborated during projects carried out with industry partners (espe-
cially from the healthcare industry and from e-government). The analysis
draws heavily on feedback received during the many discussions with industry
professionals and technical experts at conferences and meetings, it benefited
substantially from competent reviews in the scientific publication process, and
last but not least it is the result of a good deal of intuition and reasoning. The
identification of real opportunities for an efficient integration of new technolo-
gies requires a systematic analysis of potential and may create the need for
innovative methods and approaches. These are the challenges of interest to a
scientific community.

Summarizing our introductory discussion, we identify the following prob-
lem areas:

1. The notion of security. There are huge differences between the notion
of security as seen by security experts and developers on one side and
domain experts, whose concepts and language we consider closest to the
end user’s world, on the other side. Technical people refer to security in
terms of proven mechanisms, algorithms, protocols and implementations.
They want to achieve a security goal by some technical means (e.g., en-
cryption, decryption, hashing, etc.). But security in its application context
is defined in more abstract terms. In this context, the definition of secu-
rity is more obviously linked to the business goal. It generally aims at the
preservation of a desirable but almost abstract state in order to be able to
fulfil a business goal. A certificate based authentication mechanism and
the four-eyes-principle may both be seen as a means to realize the security

www.manaraa.com

1.3 Contribution 7

requirement of authorization, but the problem is that these views refer to
different levels of abstraction. The four-eyes-principle may generally be
realized with certificates (for authentication and authorization) but there
is more to it: when considered from a juristic point of view its correct real-
ization may rely on additional mechanisms (e.g., for logging and auditing)
and may even require a re-organisation of the business process.

2. Increasing systems complexity. Modern systems have to be seen as
computing components distributed across open networks. Through their
interfaces, components are continuously exposed to potential attacks from
the outside world. Additionally, the act of interacting with communication
partners itself is subject to a considerable amount of security threats.
Messages carrying confidential data may travel through intermediaries;
digital data can easily be forged, lost or stolen. Preserving a state of
security in such a networked world is certainly no trivial task.

3. Interoperability and cooperation in distributed environments. In
an open network, communication occurs between autonomous interaction
partners, who may not even know each other beforehand. Collaborations
under such circumstances need methodologies supporting collaborative
software engineering. This adds complexity to the engineering process.
Both partners have to dispose of some means to synchronise their engi-
neering efforts. But they also have to agree on ways on how to secure their
collaboration in order to prevent fraud and harm.

4. Loose Coupling. Today’s competitive environment puts enormous pres-
sure on businesses and organizations in terms of the degree of flexibility
that is required to react to a fast changing competitive environment. This
often requires the ability to re-use software and to re-arrange compo-
nents to serve in different or multiple scenarios. Components have to be
re-usable and easily configurable. The same holds for security. Being a
context-dependent concept, security controls have to be easily adaptable
to fit to the new situation and still properly realize security objectives.

Considering these problems, we elaborated an approach that claims to
push the concept of security towards a better alignment to the needs of those
whose stakes are at risk.

1.3 Contribution

This book has two main themes, one being the application of advanced
methods of software engineering in an industrial context, the other being the
integration of proven security solutions, mechanisms, and patterns into the
software engineering and application management process.

The central aim is the application of one of the most promising approaches
in software engineering - Model Driven Software Development - to the area of
security engineering, thereby pushing the development of the emerging para-

www.manaraa.com

8 1 Introduction

digm of Model Driven Security towards a more comprehensive and operational
concept.

The conceptual framework for Model Driven Security is based on the ProS-
ecO method for requirements engineering and the Sectet-framework for the
model-driven configuration and management of security infrastructures. After
a detailed presentation of the conceptual foudations, the ProSecO method and
the Sectet-framework are applied to a case study from e-governement – our
running example – and a case study from healthcare.

1.3.1 ProSecO

ProSecO is a process model for Security Engineering. It was elaborated with
the goal to provide capabilities for the systematic analysis, assessment and
management of IT security requirements and risks in an enterprise context.
ProSecO is based on an enterprise modeling approach that integrates technical
and business oriented concepts on different levels of abstraction. A key element
of the approach is the provision of traceability of model elements, security
requirements, threats and controls.

ProSecO delivers a set of models, a defined process and basic metrics to
monitor the security management process. The process is targeted towards a
collaborative security management in organisation, distributing the responsi-
bility for security to various stakeholders in an organisation that possess the
best knowledge of their area.

1.3.2 Sectet

Sectet is a framework for Model Driven Security. It supports business part-
ners during the development and distributed management of decentralized
peer-to-peer scenarios. It was primarily developped for the realization of
decentralized, security-critical collaboration across domain boundaries – so-
called inter-organizational workflows – but as will be shown in the case study
of Chapter 12 it can also handle scenarios with no worklfow, as is the case
with the distributed, virtual patient record.

The approach weaves three paradigms – each one pushed by a major stan-
dardization initiative – into an extensible framework for Model Driven Se-
curity. Based on a methodological standard (Model Driven Architecture), an
architectural paradigm (Service Oriented Architecture) and a technical stan-
dard (Web services), Sectet realizes a domain architecture aiming at the
correct technical implementation of domain-level security requirements.

The framework consists of three core components:

1. A Modeling Component supporting the collaborative definition of a
security-critical peer-to-peer scenario at the abstract level in a platform
independent context. The component implements an intuitive domain spe-
cific language, which is rendered in a visual language and is currently im-
plemented as a UML 2.0 profile for various modeling tools. The modeling

www.manaraa.com

1.4 Related Work 9

occurs at a level of abstraction appropriate to bridge the gap between
domain experts and business analysts on one side and engineers on the
other side, roles chiefly involved in two different phases of the engineering
process – the requirements engineering and the design phase respectively.

2. A Reference Architecture representing a Web services based target
runtime environment for the local workflows and back-end services at the
partner node. The workflow and security components implement a set
of workflow and security technologies based on XML- and Web services
technologies and standards.

3. A Transformation Component that takes model information and
translates it into configuration code for the components of the target ar-
chitecture.

1.4 Related Work

We identified five major areas of work related to ours.
The approach on Model Driven Security (Section 1.4.1) bears some simi-

larity to the Sectet approach (e.g., use of MOF/UML modeling techniques,
code-generation), but its primary focus is set on the generation of access con-
trol infrastructures for object-oriented applications.

The engineering of secure systems based on well-founded semantics
(Section 1.4.2) primarily aims at the formal analysis and verification of
security mechanisms, architectures and protocols.

Pattern-based approaches (Section 1.4.3) shift the emphasis on the appli-
cation of proven concepts for the realization of secure systems, transformations
and code-generation definitely taking a back-seat.

In past years two providers of frameworks for the realization of domain
architectures – the key concept of Model Driven Software Development –
established themselves as the key players in that field (Section 1.4.4). The
Sectet framework relies on them for the implementation of the approach.

Last but not least the community researching and realizing workflow se-
curity is ever growing and is touching upon key-issues for the realization of
security-critical, decentralized, inter-organizational workflows (Section 1.4.5).

Some of these approaches bear similarities to the one presented in this
book; we built on those ideas, where it made sense, adopting and extending the
concepts so to realize our vision (e.g., the use of security patterns in the design
of the Target Architectures). Other approaches are rather orthogonal and are
prime candidates to complement and extend our approach (e.g., the formal
analysis and verification of security policies in complex healthcare scenarios).

1.4.1 Model Driven Security

In an innovative work coining the term Model Driven Security [45], the au-
thors present a model driven approach whose basic idea is close to that of

www.manaraa.com

10 1 Introduction

our framework. The work introduces the concept of Model Driven Security
for a software development process that supports the integration of security
requirements into models at the design level using UML/MOF. The models
form the input for the generation of security artefacts.

However, the approach focuses exclusively on the generation of access con-
trol infrastructures in the context of server-based application logic and targets
object-oriented platforms (.Net and J2EE).

Based on a general schema for constructing languages, the modeling lan-
guages presented are semantically well-founded, and integrate a security model
for access control generalizing Role Based Access Control. In terms of abstrac-
tion, the visual modeling language SecureUML directly addresses the software
developer.

By comparison, firstly, our framework caters to a completely different ap-
plication context. We aim at supporting the realization of security-critical
inter-organizational workflows. Secondly, we raise the level of abstraction.
Instead of addressing the needs of software and secutity engineers in the
traditional development process of object-oriented applications, we consider
security from the perspective of domain and security experts during the en-
gineering but also the management process. Security concerns are identified
and defined in terms of a language comprehensible to those bound to work
with it.

In [59], the authors extend their approach towards a tool-chain for software
modeling and code generation based on formal analysis techniques leveraging
the theorem proving environment HOL/OCL. Going beyond mere code gener-
ation, the framework supports type-checking and facilitates a formal analysis
of the UML/OCL model. The extension is implemented using a functional
language.

1.4.2 Formal Systems Engineering

In [125], the author presents UMLSec, a formalized verification framework
for UML models enriched with security properties. UMLSec is grounded on
formal semantics and primarily aims at the formal analysis and verification of
security mechanisms, architectures and protocols. The pluggable framework
architecture facilitates the development of tools supporting the generation of
test-sequences and – in some limited way – code-generation for object-oriented
programming languages.

The framework stores models using an XML-based format (XMI) in a
Meta Data Repository, which is then queried using Java Metadata Interfaces
by different analyzers. These analyzers perform static as well dynamic analysis
on the UML models for security properties like confidentiality and integrity.

The approach is actually orthogonal to ours and the level of abstraction
is very close to the technical level. As explained in the previous section,
Sectet caters to the needs of a specific domain, namely security-critical,

www.manaraa.com

1.4 Related Work 11

inter-organizational workflows. With Sectet we raise the level of abstrac-
tion: our objective is to develop an intuitive language for the realization of
security requirements in distributed systems. Inuitive in our case means, that
the language should abstract as much as possible from the technical and ar-
chitectural details.

Compared to UMLSec, which only provides rudimentary tool support,
Sectet primarily facilitates the systematic generation of security artifacts
(policies, message templates for various protocols etc.) specified during the
early phases of software development. Another goal is the administration of
security during run-time.

1.4.3 Pattern-based Approaches

In [172], the authors present an approach for the application of pattern-based
software development to recurring problems in the domain of security. The
basic idea is to capture expert-knowledge and make it available to developers
as a pattern to be used during software design and development.

The focus is set on productivity improvements during the development
process by re-use of best-practices and proven solutions. The approach pro-
vides an in-depth view at the concept of patterns applied to security. It sup-
ports the development-process through an ontology based repository of expert
security knowledge. This facilitates the systematic analysis of the relationship
between various security patterns. Although the authors use patterns to sys-
tematically capture knowledge about security issues at the model level, and
thereby successfully demonstrates a way to boost efficiency, the semantics re-
main close to the technical level (application code, design, and architecture).
Transformations are not addressed in any way (model-to-code or model-to-
model).

1.4.4 Tools and Frameworks

Depending on the application context, work in this area can be split into two
categories. Workflow frameworks apply model driven approaches to workflow
engineering, whereas generic frameworks provide powerful tools to implement
domain architectures, consisting of a domain specific modeling language, a
set of transformation functions for code generation, and a target runtime
architecture.

Workflow Frameworks

In a seminal publication [137], the author describes an implementation, where
a local (executable) workflow is modeled in IBM’s UML case-tool Rational
Rose [8]. The various UML Class and Activity Diagrams are exported via
XMI-files to an integrated development environment (e.g., the Eclipse IDE [2])

www.manaraa.com

12 1 Introduction

and automatically translated into executable code for a BPEL-engine (e.g., [7]
and [9]) based on Web services. Nevertheless, the approach does not provide
any facilities for the integration of security requirements at the modeling level
nor does it support the specification of global workflows by means of peer-
to-peer interactions as suggested by the concept of abstract processes (as in
e.g., [34]). Additionally, the models do not raise the level of abstraction, but
provide simply a visual means for the process definition.

By now, commercial grade tools for the“visual programming”of executable
processes based on that approach are widely available (e.g., [7] and [9]).

Generic Frameworks

MDA-frameworks are UML-based modeling tools such as e.g., MagicDraw
UML [5] providing the plumbing technology for the realization of domain
architectures. Based on meta-models they support the definition of expressive
modeling languages and the specification of model-to-model and model-to-
code transformations as well as the definition of templates for code generation.
Nevertheless, these frameworks do not specify any domain specific language
(DSL) supporting the domain expert in modeling context specific issues.

AndroMDA [1] is an open source MDA-framework that provides meta-
data handling facilities through the Apache Velocity template language. The
framework uses the NetBeans metadata repository (MDR) for storing meta-
data and a set of cartridges for accessing the MDR [6]. A major drawback of
the framework is the complexity involved in defining extensions.

openArchitectureWare (OAW) is an open source framework that pro-
vides a more generic solution for domain specific engineering [157]. The rea-
son is that it is open to other modeling frameworks like the Eclipse Modeling
Framework or tools like MagicDraw UML. Its template language XPAND
provides an intuitive way to generate any kind of data from specified models.

The Sectet framework leverages these technical frameworks, and de-
fines languages for problems specific to various domains (e.g., the engineer-
ing and administration of security-critical inter-organizational workflows in
e-government and healthcare).

1.4.5 Workflow Management

Inter-organizational Workflow Management Systems

Abigcommunitydealswith inter-organizationalworkflowmanagementsystems,
whose outstanding common feature is a central instance of control. The number
of efforts dedicated to the analysis of issues specific to inter-organizational
workflows is growing rapidly (e.g., [129], [22], [101], and [68]). The main efforts
chiefly revolve around modeling issues.

Lately, these efforts took a direction picking up some of the issues rele-
vant to our approach: [49] provides a methodical comparison of WSDL- and

www.manaraa.com

1.4 Related Work 13

ebXML-based approaches and comes to the interesting conclusion of the in-
compatibility of the two approaches. In [50] the authors analyse security and
workflow semantics related issues that arise during the modeling of business-
to-business protocols.

As we do not aim to contribute a novel approach to this field, we rely on
existing approaches. For example, we use UML 2.0 for modeling workflows
and experiment with various workflow management systems based on Web
services technology.

Workflow Security

In the area of workflow security, literature traditionally focuses on scenarios
with a central instance of control, where process execution is controlled by a
workflow management system.

Research in this area started with the analysis on how to enforce access
control through mandatory or discretionary security (e.g., [39], [38], and [38]).
The formalized approaches were soon implemented and integrated into work-
flow management systems (e.g., [118], [51], and [144]).

Alternative approaches analyse the application of RBAC to workflow man-
agement (e.g., [206]) and process models (e.g., [211], and [210]) and even apply
concepts like RBAC to distributed scenarios (e.g., [93], [94], and [209]).

Security extensions at a low level of abstraction for workflow management
systems are treated in [118], [38], [206], and [102]. In an interesting contribu-
tion, [112] proposes an approach for integrating security at different levels of
abstraction in the system development cycle, but the full potential of a model
driven approach, linking abstract domain-level models to their technical im-
plementation, is not yet exploited.

A number of approaches deal with secure document exchange and work-
flow management in a centrally organized environment. Among these are the
Author-X system [51], PERMIS [69], and Akenti [197].

Often central control may be appropriate, but in many of today’s applica-
tion scenarios a peer-to-peer style communication architecture is imperative
in order to guarantee an appropriate level of security (e.g., a patient’s privacy
in electronic healthcare, a citizen’s anonymity in electronic voting and a bid’s
confidentiality in an electronic tendering scenario). We consider this to be
Sectet’s main domain of application.

www.manaraa.com

2

SOA - Standards & Technology

This chapter gives abrief overviewofparadigms, technologies and standardsthat
represent the technical and conceptual foundation of the Sectet-framework.
Section 2.1 introduces the paradigm of Service Oriented Architecture (SOA)
and presents a motivating example for subsequent sections: Section 2.2 lays
out the technical underpinning of SOA – the concept of Web services, and
Section 2.3 covers the standards in the Web Services Specification Stack. Web
Services Security Standardswill be covered extensively inChapter 3 after having
introduced issues around SOA security.

2.1 Service Oriented Architectures

The concept of Service Oriented Architecture (SOA) has emerged as a pow-
erful architectural paradigm catering to the needs of today’s companies to
constantly keep up with a fast changing competitive environment. Rapidly
evolving technologies force businesses to focus on core competencies and out-
source many of their activities. Market forces promote scenarios where com-
panies have to cooperate closely in order to be able to achieve a common
business goal. Businesses have to cope with ever changing customer require-
ments. These challenges make the ability to flexibly reorganize a company’s
business processes a decessive key to success.

On the other hand, mature markets push companies to merge, to acquire
one another, or to collaborate even more tightly in order to reach the critical
size to survive. What in earlier days was achieved by a process within a single
company became a complex process involving many actors, very often with
no central point of control – a form of industrial organization called “Virtual
Enterprise”[65]. SOA basically caters for issues that arise when the integration
of heterogeneous business environments is on the agenda.

www.manaraa.com

16 2 Technology - State-of-the-Art

2.1.1 Principles of SOA

SOA is based on principles that support a flexible approach for the realization
of distributed systems that interact across domain boundaries, be they inside
the company or scathered among a multitude of business partners co-operating
in order to accomplish a common business goal.

The concept of SOA is based on the notion of services. Services package
application functionality and make it available through interfaces. Because a
component’s functionality is specified through its interface, and thereby hides
implementation detail, it is said to be loosely coupled with other systems that
may access its services. This abstraction separates service description from
the execution environment.

Service description can occur at different layers of abstraction and is often
referred to as service meta-data. Meta-data describes the services in terms
of quality of services, security requirements, business functionality etc. in a
machine readable manner (e.g., XML). Meta-data makes services discoverable
by other systems over a network and facilitates a concept known as dynamic
binding, where the exact implementation is determined at run-time. The use
of wide spread XML-standards for service description fosters interoperability
of loosely-coupled systems in distributed environments.

Being accessible through a public interface, services are composable, which
means that they may be a functional part of some other service. The
raise of abstraction level for service description allows to narrow the con-
ceptual gap between its implementation and its actual business function.
This supports a business-purpose oriented combination of several services to
a complex service composition or an orchestration of several services into
a process.

2.1.2 Motivating Example

Figure 2.1 shows a simplified SOA Scenario modeling the service offering of a
provider of online tax services. The example should illustrate the concept of
SOA and the use of Web services standards and technologies in subsequent
sections. It also establishes the context for the introduction of basic concepts
of SOA security in Chapter 3.

The scenario describes the processing of a company’s annual statement for
filing a tax return with tax authorities. The process is offered as an online
service by a provider of tax services (called Tax Advisor in Figure 2.1) and
relies on external services (e.g., the retrieval of tax files stored with public
authorities) offered by a third party, which in our case is the Municipality.

According to the process definition the company initially submits its an-
nual statement to the Tax Advisor through a Web service call. The Tax Ad-
visor retrieves the company’s tax files from its own database. In case the files
are not present he relies on external services to access his client’s files. In

www.manaraa.com

2.2 Web Services 17

Fig. 2.1. Example SOA Scenario for a Provider of Tax Services

our example, they may be stored with the Municipality. Once processed, the
declaration is forwarded to the Municipality which returns the amount of due
taxes. The Tax Advisor finally notifies the Company.

2.2 Web Services

Service Oriented Architecture and Web services are often referenced to as
interchangeable concepts, but they represent two distinct concepts. Web ser-
vices specifications and technologies define the technical concept for services
implementation and interaction, whereas the concept of Service Oriented
Architecture represents an associated architectural paradigm expanding the
focus towards the realization of a decentralized systems architecture that
delivers application functionality. In this sense, SOA supports the end-to-
end integration of services across domain boundaries. SOA may be real-
ized using other technologies as well (e.g., CORBA [196] or Enterprise Java
Beans [3]).

www.manaraa.com

18 2 Technology - State-of-the-Art

2.2.1 Basic Definition

The term Web services commonly refers to a set of technologies for a plat-
form neutral and language-independent interaction. The concept specifies a
software interface that defines a collection of operations that can be accessed
over some kind of network through standardized XML messaging. Web ser-
vices use protocols based on the XML language to describe an operation to
execute or data to exchange with other Web services.

The beginnings are commonly pinned down to the year 2000, with the
introduction of the cornerstone standards specifications SOAP [103][104],
WSDL 2.0 [70] and UDDI [47]. The specifications soon became industry-
wide standards for interoperability among software components, and, since
then, many companies and organizations have been involved in the process
of open standards development, struggling to specify enhancements that raise
the level of inter-operability. The Web services Architecture Working Group
of the World Wide Web consortium (W3C) has developed the following defi-
nition for a Web service:

A Web service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed by
its description using SOAP-messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related stan-
dards [10].

This definition states that a Web service can be seen as an application
that is accessible through its application programming interface (API), which
is specified in the machine-processable XML-based format Web Services De-
scription Language (WSDL) [70].

2.2.2 Service Invocation

A Web service interacts with other services through an invocation mechanism
based on the communication protocol SOAP. SOAP messages leverage XML
for the representation of data and are usually conveyed over HTTP [205], and
TCP/IP [150].

Figure 2.2 shows the structure of a SOAP message based on XML. The
SOAP structure acts as an envelope consisting of two part. The header carries
transport related meta-information and information on sender and recipient,
whereas the body “wraps” application data such as method calls, parameters
and/or responses to corresponding queries.

Figure 2.3 exemplifies the submission of a company’s annual statement to
a tax advisor offering online tax services. The company submits its annual
statement through a Web service call by passing company data wrapped in
the message body as a SOAP message. The application at the tax advisor’s
end knows how to retrieve relevant data and may return a response.

www.manaraa.com

2.2 Web Services 19

Fig. 2.2. Example SOAP Message Based on XML

Fig. 2.3. Example SOAP Message for a Company Submitting an Annual Statement
to its Tax Advisor

www.manaraa.com

20 2 Technology - State-of-the-Art

Fig. 2.4. Protocol Stack for Service Discovery, Description, and Invocation (taken
from [91])

2.2.3 Service Description and Discovery

Service discovery plays an important role in distributed environments. A ser-
vice requester only has to know the interface of the service at the provider’s
side, implying that the service has to be localizable. This is basically achieved
by publishing a machine readable description of the service with a publicly
available repository – a so-called “registry”.

Meta-data describe services and need to be searchable and discoverable.
The Universal Description and Discovery Interface (UDDI) is the most widely
used specification of such a registry. It provides a highly functional and flexible
approach for searching, discovering, and publishing Web services. UDDI func-
tionality is accessed over SOAP. A search query for a specific service returns
a link pointing to a WSDL document.

The Web Services Description Language (WSDL) is an XML format that
describes services as a set of endpoints that exchange messages. The standard
specifies a language for the definition of abstract service functionality, as well
as syntax and structure of service calls. Service operations and messages are
defined abstractly and then bound to a concrete network protocol and a spe-
cific message format (late binding, cf. p. 16). A potential service requester
should be able to “consume” the service based on this information.

Figure 2.4 summarizes the protocol stacks used for the three phases of
Web services discovery, description and invocation.

2.3 The Web Services Specification Stack

Since the introduction of Web services technology, which is commonly dated
to mid 2000 with the release of the specifications for XML-messaging (SOAP
and WSDL 1.1), interoperability has always been a major issue. Various or-
ganizations (e.g., W3C, OMG and OASIS) and major industry players (e.g.,
IBM, SUN and Microsoft among others) are putting considerable efforts to
standardize a uniform way of how to describe, access, and locate services that
are distributed over a network. The result is a stack of open specifications
that build upon the basic protocols (cf. Section 2.2.1). They are categorzied
according to their level of abstraction and to their functionality (Figure 2.5).

www.manaraa.com

2.3 The Web Services Specification Stack 21

Fig. 2.5. The Web Services Specifications Stack

In the remainder of this section, we give a schematic overview of the spec-
ifications in the stack.

2.3.1 Transport Layer

A Web services platform is a transport neutral messaging architecture. This
means that Web services can be accessed using any common communication
protocol (e.g., HTTP, HTTPS, TCP/IP, etc.) or even use proprietary ones.

2.3.2 Messaging Layer

This layer defines the technical underpinnings for realizing the most basic
messaging functionality, comprising the eXtensible Markup Language (XML)
[54] and the SOAP protocol - both covered in Sections 2.2.2 and 2.2.3.

WS-Addressing [204] goes a step further: it specifies transport-neutral
means to communicate addressing information. By including HTTP-specific
data in the XML message itself (i.e. a standardized SOAP header), the mes-
sage carries its own dispatch meta-data. This shifts network-level transport
funtionality to convey dispatch information to the message level: the respon-
sibility of network-level transport is reduced to delivering the message to a
dispatcher capable of reading that meta-data. Once that message hits the dis-
patcher, the job of network-level transport is done. Therefore this standard
facilites end-to-end message identification, especially usefull for long-running
asynchronous interactions that span arbitrary periods of time.

www.manaraa.com

22 2 Technology - State-of-the-Art

2.3.3 Description Layer

Standards in this layer provide the facilities to describe the characteristics of
services in an abstract way.

The Web Services Description Language (WSDL) is the XML format that
describes services as a set of endpoints that exchange messages (cf. Section
2.2.2).

Nevertheless, services often need to be decorated with more refined descrip-
tions. WS-Policy [40] provides the framework for extending feature description
beyond WSDL’s capabilities. The framework specifies additional meta-data
that may be interesting in the application context: endpoints can advertise
their capabilities (e.g., quality-of-service) and constraints imposed on service
usage (e.g., security) in the form of policies that are attached to services.
Intersections and/or incompatibilities of conditions and constraints between
various endpoint policies can be identified and evaluated.

2.3.4 Discovery Layer

Service discovery plays an important role in distributed environments. The
Universal Description and Discovery Interface (UDDI) is the most widely
used specification for Web services discovery (cf. Section 2.2.3).

In some cases it may be requested to address the query directly to the ser-
vice endpoint, bypassing the registry. The WS-MetadataExchange ([42]) speci-
fies three protocols (request-response message pairs) to retrieve the meta-data
for the interaction with a specific service endpoint. Based on these protocols
the bootstrapping mechanism faciliates the incremental retrieval of a Web
service’s metadata: a WS-Policy file describing the capabilities, requirements,
and general characteristics of Web services, one or more WSDL files specify-
ing abstract message operations as well as concrete network protocols, and a
couple of XML-Schema files specifying the structure and the contents of XML
messages received and sent by Web services [159].

2.3.5 Quality of Service Layer

On top of the transport, messaging and description layers, which specify the
fundamental mechanisms for Web services interactions, various organizations
have proposed extensions for different purposes related to the description of
quality-of-service features. The extensions cover the three areas: security, reli-
ability of message delivery and transactional support ([131], [52], and [64]). We
subsequently sketch those standards related to reliability of message delivery
and transactional support.

WS-ReliableMessaging defines concepts and protocols for the realization
of a message exchange that satisfies specified delivery assurances like in-order
delivery, at-least once delivery and at most once delivery of messages [52].

www.manaraa.com

2.3 The Web Services Specification Stack 23

Fig. 2.6. The Web Services Security Specifications Stack

WS-Coordination specifies a protocol for the coordinations of actions of
distributed Web services based applications. An application service can trace a
message through its coordination context that is attached to a message specif-
ically addressed to an endpoint reference [62]. The context can be propagated
through standardized messages between cooperating services.

Nevertheless, as a mere coordination framework this specification needs to
be complemented by two other standards for the coordination of transactions
among Web services: WS-AtomicTransactions [64] and WS-BusinessActivity
[63] are specific protocol extensions to WS-Coordination on how to reach the
overall outcome agreement.

2.3.6 Web Services Security Standards

The world of Web services standards, recommendations and drafts has grown
considerably in the last years. IBM and Microsoft have published a roadmap
[143] related to the further evolution of the framework towards specifcations
focusing on security related issues. The impressive set of Web Services Security
Standards (Figure 2.6) addresses issues around the establishment of trust
between peers, the definition of security policies, the enforcement of access
control, etc. We will introduce these standards in Chapter 3 after having
covered SOA specific seceurity issues.

2.3.7 Services Composition Layer

A business process defines the execution order of interrelated tasks - may
they be automated or require human intervention. Businesses provide value-
added services through composition of elemental Web services using service
composition languages. A composition consists of multiple invocations of Web
services - often scattered across many domains - in a specific order. It takes
the form of either an Orchestration or a Choreography .

An Orchestration describes the execution order of Web services (control
flow) and how the services interact with each other by exchanging messages
(information flow). In the context of Web services, an orchestration describes
an executable process in a machine readable format, which in most cases is an

www.manaraa.com

24 2 Technology - State-of-the-Art

XML language. Executable means that the process is controlled by a Workflow
Management System (WfMS). An Orchestration describes the execution order
of the interactions from the viewpoint of the partner in charge of implementing
the process.

Example: the Tax Advisor in the example scenario in Section 2.1.2, of-
fering the tax services to companies may realize his internal workflow based
entirely on human interaction: one clerk may retrieve the files from the local
archive and bring it to the offical in charge, who may draft a tax declaration
based on these data, another clerk may claim missing information from local
authorities, and so on. Or, alternatively, he may choose to automate the whole
workflow (or parts of it as not all activities may be offered as electronic ser-
vices) by orchestrating service calls with a WfMS. In that case, the messages
(e.g., request for retrieval of tax files) and documents (e.g., annual statement,
tax declaration) are sent from one service to the next triggering some manual
or automated processing.

The Business Process Execution Language for Web Services (WS-BPEL)
[36] is the de-facto standard for Web service orchestration. WS-BPEL is an
XML-based language to compose workflows based on “atomic” Web services.
It provides mechanisms to define executable business processes, which can
be executed by a WfMS (i.e. a BPEL engine) and, with limitations, abstract
business protocols. The latter represent process descriptions that only specify
the mutually visible message exchange behavior of each of the parties involved
in the protocol, without revealing either the implementation behind or their
internal process logic.

BPEL provides the means to specify workflow activities (e.g., invoke, re-
ceive, reply) for a WfMS that orchestrates the execution of Web services in a
specific order defined by the flow of control. BPML [35] and ebXML [71] are
alternative languages to specify executable processes. BPML is quite similar
to WS-BPEL as it supports Web services standards, but it is considered as
semantically weaker.

Since we strongly focus on Web services, we consider WS-BPEL as the
most appropriate top-layer standard to model local workflow processes in our
context. The specifications of local processes in Chapter 9 are based on the
semantics of WS-BPEL.

A Choreography is a non-executable business protocol that describes the
sequence of interaction activities (control flow) between business partners in
terms of message exchange behavior of each of the parties involved in the
protocol (information flow) in a“peer-to-peer” fashion. As opposed to abstract
business protocols of WS-BPEL, a choreography is not limited to messages
exchanged with the WfMS executing the workflow but involves the viewpoint
of all peers. This means, that there is no central control of workflow execution.
A Choreography can be seen as a virtual workflow that emerges through
interaction of executable processes.

Example: The motivating scenario in Section 2.1.2 may be extended and
adapted to cover the viewpoint of all participants (i.e. the Company, the

www.manaraa.com

2.3 The Web Services Specification Stack 25

Municipality and possibly a further party e.g., a Notary offering notarization
services) including services interaction that may not concern the Tax Advisor
(e.g., the Company may need to access a notarization service as a result of
company bylaws changing prior to annual statement submission).

Collaboration protocols like BPSS [71] and WS-CDL [126] provide the
means to formally specify collaborations in distributed environments by offer-
ing a global view on collaborating services. ebXML comprises a powerful set
of standards for the specification of these collaborations called B-2-B proto-
cols but it is not compatible to the Web services concept. In Part II of this
book, the specifications of peer-to-peer style compositions – so-called “Global
Workflows” (cf. Chapter 7) – are based on the semantics of WS-CDL.

www.manaraa.com

3

Basic Concepts of SOA Security

This chapter presents the basic notions and concepts of security. We will
elaborate on these in later chapters in context of a motivating case study
from e-government in Chapter 5 and an extensive case study from healthcare
in Chapter 12.

Based on the many meanings of security we elaborate a definition of se-
curity appropriate to the context of distributed and decentralized systems in
Section 3.1. We move on to define security concerns in context of such sys-
tems in Section 3.2. We introduce the key concepts facilitating the expression
of these concerns in terms of security “needs” of an asset: either when engi-
neering and managing security-critical systems (as Security Policies in Section
3.3) or when evaluating them in light of the three driving forces defining the
state of a system’s security: Vulnerabilities, Threats and Security Controls (as
Security Requirements in Section 3.4). We close with Section 3.5 introducing
Web Services Security Standards as a means to realize SOA Security.

3.1 What Is (SOA) Security?

Common knowledge defines Security as a state of freedom from risk or danger.
It can also mean a state free from doubt, anxiety, or fear. Computer security
narrows the focus to computing systems. It describes a field of computer sci-
ence dealing with risk, threats and mechanisms related to the use of computing
systems. Even seen in that context, the definition of security comes in (too)
many flavours. For example, Garfinkel et al. define computer security in a very
broad sense, emphasising the notion of a system’s availability [96]:

“A computer is secure if you can depend on it and its software to
behave as you expect.”

However security obviously does not only describe a desirable state, where
systems function as intended. It also encompasses amongst other things - the

www.manaraa.com

28 3 Security Policies

notion of actively taking measures to preserve this state through security
measures. Gollmann gives a complementary definition [100]. Accordingly,
security

“. . . deals with the techniques employed to maintain security within a
computer system.”

Nevertheless, these two definitions – even taken together – fall short on one
important point. Nowadays, computing systems cannot be viewed anymore as
isolated hosts offering computational functionality to human users. Rather,
modern computing systems are loosely coupled components distributed over
a network and communicating with each other: they are heterogeneous, dis-
tributed, and inter-connected. For one, it is evident that a system which is
connected to other systems is exposed to a considerable amount of additional
security threats. Nevertheless there is another quality in todays computing ar-
chitectures. Computer systems are not conceived as centralized architectures
anymore. A Service Oriented Architecture represents an inherently decentral-
ized computing concept. Hence, an appropriate understanding of the concept
of security needs to take into account the system, its context and dependencies
between both.

Therefore, the first dimension we need to add to reach a working definition
of security for our goals is the dependency of a system on its “surrounding” or
context – which in our case refers to distributed and decentralized architec-
tures.

Once we identify all relevant dependencies of a system’s well functioning
on its context, security can be analysed properly and implemented correctly.
These dependencies make security a relative attribute, which may best be
understood in terms of how much it contributes to achieve a specific category
of “needs”. As a consequence, the second dimension we add to our definition
of computer security is the relationship to specific goals – in terms of security
needs – to be reached.

Accordingly, we define security as (extended and adapted from [100], [53],
and [162]):

“. . . the sum of all techniques, methods, procedures and activities em-
ployed to maintain an ideal state specified through a set of rules of
what is authorized and what is not in a heterogeneous, decentralized,
and inter-connected computing system.”

Going beyond the requirements of traditional, monolithical computing sys-
tems, this definition of Security addresses the specificities of Services Oriented
Architectures in three dimensions:

1. the architecural blueprint of SOA: SOA infrastructures realize security-
critical business processes involving many partners and spanning multiple
security domains – this significantly augments the number and complexity
of security requirements to be met,

www.manaraa.com

3.2 Security Objectives 29

2. the organizational aspect of SOA: partners want to stay in control over
their part of the workflow, thereby imposing a decentralized, peer-to-peer
style architecture, and

3. the administrative challenge of managing and enforcing SOA security: par-
ties may not know each other prior to engaging in a buisness relationship.
Some partners may even stay (at least partially) unknown to each other
when interacting.

Taken together, these three dimensions clearly justify the need for the
definition and analysis of security challenges and concepts in light of SOA.
We will take our definition of security as a starting point to clarify relevant
concepts of SOA Security in the next Section.

3.2 Security Objectives

Security Objectives provide a categorization of the most basic security needs
of an asset. [12] defines a Security Objective as:

“. . . a statement of intent to counter identified threats and/or satisfy
identified organisation security policies and assumptions.”

Security Objectives are also called security properties, security aspects, se-
curity concerns or security states [172]. Literature categorizes them according
to various taxonomies. For example, Bishop identifies three basic aspects of
computer security: confidentiality, integrity and availability, whose interpreta-
tion vary according to the context in which they arise [53]. Menezes et al. list as
many as seventeen basic objectives for information security, among them com-
mon objectives such as confidentiality, integrity, identification, and authoriza-
tion [142]. They also identify signatures, timestamps, and receipts as security
objectives, which in conventional terms are rather seen as mechanisms, means
to realize a specific objective. However those security objectives are derived
by the four cryptographic goals: confidentiality, integrity, authentication and
non-repudiation. Eckert identifies six basic security objectives (Authenticity,
Confidentiality, Integrity, Availability, Accountability, and Anonymity) [78].

For our purpose, we identify three broad categories of generic Security
Objectives according to the basic goal that is pursued for a given asset. We
rely on the taxonomy given in [53] and define the three objectives accordingly:

1. Confidentiality is the goal that data should be readable to actors with
appropriate permission.

2. Integrity is the goal that data and information should not be altered if
not explicitly allowed.

3. Availability is the goal that assets have to be available to authenticated
and authorized individuals when needed.

www.manaraa.com

30 3 Security Policies

The definition is deliberately kept abstract so to emphasize the indepen-
dence of any technical, architectural and application level context.

We define other security objectives as mentioned in literature (e.g.,[142]) as
Security Policies which realize one or more of the three generic Security Objec-
tives. For example Authenticity actually refers to the Integrity of information
identifying the sender; a Break-Glass-Policy (BGP) specifying emergency ac-
cess to sensitive information realizes Confidentiality but also Availability: it
aims at making information about who accessed what information availiable
(e.g., through logging) in case of a security incident. An introduction into
Security Policies is given in the next Section.

In part II, Chapter 7 extensively covers Basic Security Policies realizing
exactly one objective whereas Chapter 11 covers Advanced Security Policies
realizing a combination of the three basic objectives.

3.3 Security Policies

Security Objectives provide a generic categorization of goals that – when
strived for – may contribute to reach a certain kind of security need. Security
needs may take either of two forms depending on the context of their use: we
subsequently introduce the concept of Security Policy , and the next section
introduces Security Requirements.

A Security Policy realizes a specific Security Objective (or a combination
thereof). A Security Policy is defined as [53]:

“. . . a statement of what is, and, what is not allowed.”

We define Security Policies as semi-formal models. Formal in the sense
that they can be expressed in a machine-readable way so to configure security
mechansims, informal in the sense that we do not provide a mathematical
definition. This may give raise to legitimate criticism: policies may not be
formulated unambiguously. However, our apporach focuses on applicability
and usability in an industrial context. A formal policy may add a considerable
degree of precision and even be the only way to prove the policy’s correctness
at a specific level of assurance. But this usually comes at a price too high with
regard to general applicability. We define an effective policy as based on the
common consensus and interpretation of the community supposed to use it.
Nevertheless, formal models can be integrated in the framework as needed:
in later chapters we will integrate models with a proven formal underpinning
(e.g., for Role Based Access Control) to support the definition of complex
policies.

We differentiate between Basic Security Policies and Advanced Security
Policies. The latter are based on a formal Policy Model. We will present the
four most prominent Policy Models before introducing Advanced Security
Policies.

www.manaraa.com

3.3 Security Policies 31

3.3.1 Basic Security Policies

A Basic Security Policy considers one of the Security Objectives (Confiden-
tiality, Integrity, and Availability) in isolation.

Confidentiality Policy

A Confidentiality Policy specifies system states where only those entities which
are authorized can access information. Such a policy realizes the Security Ob-
jective of Confidentiality. Nevertheless it relies on authentication and autho-
rization as a means to realize access control. Whereas authentication is the
mechanism to establish and verify an entity’s identity, authorization realizes
a specific security model on how to grant various privileges to authenticated
entities. This is the reason why both – authentication as well as authoriza-
tion – where not defined as Security Objectives but are mere means to an end.
Security Policy Models are covered in Section 3.3.2, Security Mechanisms in
Section 3.4.2,

SOA are message based systems. The use of open and machine processable
standards makes the messages particular prone to manipulation and unau-
thorized disclosure. In such systems communication is secured through the
use of cryptography. Confidentiality is realized through the encryption at the
message-layer. The possibility to encrypt various parts of a message with dif-
ferent keys allows end-to-end security, keeping the message parts confidential
and accessible only to the intended recipient even if travelling over interme-
diaries (or stored with them temporarily). In SOA, a Confidentiality Policy
is enforced through standards like XML-Encryption, XML-Digitial Signature
and WS-Security (Please, refer to Section 3.5).

Note that we do not interpret such a policy in the sense of guaranteing what
is commonly known as an Information Flow Policy based on complex math-
ematical models (e.g., Bell-LaPadula or Biba and Clark-Wilson for Integrity
[53]). As we will see in later chapters, we define this policy as preventing the
unauthorized disclosure of information in a basic, distributed SOA scenario,
where peers exchange documents.

Integrity Policy

An Integrity Policy identifies authorized ways in which information may be
altered and subjects authorized to alter it. Integrity comes in two flavors:
data integrity ensures that data are not compromised and can thus be trusted
over a specific period of time, whereas integrity of origin guarantees that
information about a recipient is correct. Both are implemented with the same
cryptographic primitive: digital signature.

Like message confidentiality, integrity is realized through the application
of cryptographic primitives at the message level. In most cases only parts of
a message are signed. Besides boosting performance (leaving uncritical parts

www.manaraa.com

32 3 Security Policies

unsigned) this also caters to the fact that a message travelling over many in-
termediary may be subject to many transformations (e.g., adding application-
level information during process execution). A message may therefore not pass
an integrity check even after a single transformation. This means that in-
tegrity must be realized at a level of granularity below the message level (e.g.,
elements, or parts of a message). An Integrity Policy is enforced through
standards like XML-Encryption, XML-Digitial Signature and WS-Security
(Please, refer to Section 3.5).

Availability Policy

An Availability Policy specifies system states where the provision of a specific
resource has to be guaranteed. Availability is not only an important aspect
of reliability, guaranteeing the existence of a resource. In security, the aspect
of availability is interpreted in the sense of non-repudiation: someone may
use a resource, access information, or call a service as needed under specific
conditions, and that use must not be deniable.

Non-repudiation is an important security requirement for the realization
of SOA executing mission-critical processes. Electronic transactions have to
comply with a plethora of legal regulations. In scenarios where partners mostly
unknown to each other engage in a business relation, the digital signature is
a means to realize a legally binding commitment which holds before court.
For example, the Austrian E-Government Law [158] puts the digital signature
on a par with its “handwritten” equivalent and specifies requirements for its
realization in distributed architectures [91].

In SOA, a Non-repudiation Policy is basically implemented through an ex-
change of signed and time-stamped messages documenting transactions (e.g.,
the Company sending its annual statement to the Tax Advisor) leveraging
standards like XML-Encryption, XML-Digitial Signature and WS-Security
(Please, refer to Section 3.5). The variant of our implementation realizing
Non-repudiation of Reception as well Non-repudiation of Sending is covered
extensively in Chapter 8.

3.3.2 Policy Models

In an industrial context, security concerns usually go way beyond what we
cover with the category Basic Security Policy. The electronic realization of
security-critical processes is tightly coupled with concerns about how to best
realize security in compliance with the many provisions, regulations and laws
imposed by regional, national, international and industry legislations.

Security Models abstract from specific policies and their particular charac-
teristics. A Security Model represents the formal foundation for an Advanced
Security Policy with complex characteristics and dependencies between its
statements. This model-based abstraction allows a systematic analysis of a
policy’s correctness and supports systematic reasoning about its properties.

www.manaraa.com

3.3 Security Policies 33

We subsequently analyse four of the most important Policy Models with
respect to their ability to cope with complex Authorization Policies – which
are covered in Chapter 11. Authorization restricts access to authenticated en-
tities holding the privileges to perform an action on a resource. Authorization
Policies define the rules of what is allowed and what is not. They are enforced
at the various service providers’ endpoints through a security infrastructure
acting as a single point of entry – a so-called Policy enforcement Point– into
the security domains. Prior to granting access to a resource the requester is
authenticated and then assigned privileges according to the underlying Secu-
rity Model. The infrastructure decides by checking upon assigned privileges
captured in executable XML policies whether to grant access or not.

In SOA, the administration of these endpoints is a crucial issue. End-
points not only need to be aware of the technology used to enforce security at
the interaction partner’s end (e.g., by advertising their technical security re-
quirements through machine-readable policies with WS-Security Policy, cf. to
Section 3.5.3), but they also need an efficient concept to dynamically manage
these privileges.

The efficient administration of Authorization Policies in distributed envi-
ronments is a pivotal criteria for the choice of an appropriate Security Model.

Discretionary Access Control (DAC)

In DAC based systems, users in possession of an object are considered to be
the owners of the resources. They have full control over the resource. This
enables them to use objects they own as they wish, and, for example, to
delegate access rights deliberately to any further user [117]. The latter in turn
becomes an owner as well and may proceed as he likes.

This notion of Resource Ownership makes the DAC model unsuitable for
exclusive use in many distributed systems. For example, in a SOA based
healthcare scenario, medical data is created by users of healthcare informa-
tion systems in the domains of various collaborating partners. Evidently, none
of those can actually claim ownership of the data. Those to whom the data
may be of most value (or, alternatively, those who may suffer the greatest loss
when used inappropriately) – the patients – have no control at all.

As a sideline we would like to point out, that the debate about ownership
of sensitive medical data is currently gaining momentum in light of technolog-
ical advances facilitating storage, dissemination, and duplication of sensitive
data (e.g., [76], [28] and [139]). The outcome is very likely to be linked to an
appropriate definition of the concept of ownership. Ownership can obviously
be interpreted in various ways: does the radiologist who actually produced the
x-ray own the artefact, the hospital which is bound to store the document for
a specific time period, is it your doctor who ordered the x-ray, or is it your
insurance who paid for it. The issue is far from resolved and for the time being
the intuitive answer may be rooted in the fact that medical data actually is
of most value to the individual concerned – the patient – and that he should

www.manaraa.com

34 3 Security Policies

be empowered to determine its appropriate use. So in our context, an appro-
priate security policy model will be evaluated with respect to its abilities to
integrate this viewpoint.

The administration of policies based on DAC in distributed environments
is evidently almost infeasible.

Mandatory Access Control (MAC)

In MAC based systems, users and their rights are enforced by a central mech-
anism (e.g., the operating system) and administered by a central authority
(e.g., the system adminsitrator). Users do not have the ability to override the
policy.

MAC is traditionally associated with multi-level secure systems. The con-
cept of MAC is realized by assigning security labels to data elements at very
fine-granular levels, thereby expressing their security sensitivity and assigning
clearance levels to subjects. In MLS, less-sensitive information can be accessed
by higher-cleared individuals, and higher-cleared individuals can share “sani-
tized”documents – where sensitive information that the less-cleared individual
is not allowed to see is removed– with less-cleared individuals.

MLS was the concept of choice in the mainframe era, where many users
had to be granted simultaneous access to sensitive information. It is still in
use today in operating systems, however, in many SOA scenarios MAC is
of limited use: e.g., inter-organizational healthcare scenarios involve many
actors accessing resources scattered over multiple domains and the centralized
administration and enforcement architecture of MAC is incompatible with
SOA-based Systems which advocate loose coupling with decentralized control.

Role Based Access Control (RBAC)

RBAC enforces access control according to access policies, which define a
number of roles and assign permissions to roles [169]. Subjects are assigned
one or more roles. A role hierarchy defines inheritance relations between roles.
The principal motivation of RBAC – this is to provide administrative con-
venience – can be further strengthened by using RBAC to manage RBAC
([170]). Many approaches analyse the application of RBAC to workflow man-
agement (e.g., [38], [206]) even taking distributed scenarios into account (e.g.,
[93] and [94]).

The limitations of the basic RBAC model become obvious especially when
used in context of Service Oriented Architectures.

Firstly, in practice authorization can generally never be granted exclusively
based on permissions assigned to roles as in static RBAC. Rather, access rights
depend on a set of dynamic constraints: the right to call an operation of a
specific Web service may primarily depend on the caller’s role but may be
further confined by attributes of the system’s environment (e.g., a principal
may access a service only between 9.00 a.m. to 5.00 p.m. on working days),
of the service call himself (e.g., authentication mode) or on the content of

www.manaraa.com

3.3 Security Policies 35

resources (e.g., a principal with role Tax Advisor may only access the files
of Clients he is mandating). Dynamic constraints define the conditions under
which a role has the right to access services.

Additonally, the level of granularity necessary for the definition of access
rights in security-critical SOA scenarios goes well beyond what is possible
with basic RBAC. A requester’s permissions may not only be restricted at the
services level (e.g., the right of a princpal to call a service that may return
a document) but his access rights may have to be further limited at a finer
level of granularity (e.g., the permission to only read specific parts of the
document). Constraints on permissions support the specification of access
rights at various level of granularity.

The framework we are going to present in this book – Sectet – han-
dles these points of criticism by supporting the dynamic constraints through
Sectet-PL, a language with predicate logic conditions (cf. Chapter 11).

However, the limitations of RBAC much further: for example, it does not
cater for the notion of continuity in access control. This means that it does not
support the revocation of access rights once granted. The set of suggestion for
improvement is ever groving (e.g., [28]). With these limitations in mind, we will
replace the RBAC model with an extended security model – the UCONABC

model in Chapter 12. It is briefly introduced subsequently.

UCONABC

UCONABC is a comprehensive policy model for usage control. It extends
traditional access control models in two respects [160]:

1. continuity of access decision, and
2. mutability of attributes.

Continuity of access decision means that the decision to access an object is
not only verified before but also during access and may result in the revocation
of permissions, whenever conditions are not met. For example, a Tax Advisor
should be allowed to retrieve and read a Client’s tax file only as long as he his
mandating that client. Once his mandate lost, he should not be able to read
the tax file anymore. Policy conditions in UCON consist of subject, object
and environment attributes.

Mutability of attributes refers to subject or object attributes changing as
side-effects of accessing a resource. This may additionally result in a change in
ongoing or subsequent access decisions. This facillitates for example a policy,
where access is confined by access history. For example, a Chartered Accoun-
tant working for a Tax Advisor should not mandate a Company that stands
in direct competition to any of his former clients (a so-called Chinese Wall
Policy [53]).

Policy statements in UCON consist of authorizations, obligations and con-
ditions. Authorizations refer to predicates based on subject or object at-
tributes. Obligation actions are directives to a subject to perform additional

www.manaraa.com

36 3 Security Policies

actions before or during access. Predicates exclusively based on environment
attributes such as system time, device type etc., are categorized as conditions.
Authorizations, oB ligations and Conditions are collectively referred to as the
building blocks of UCONABC . UCON conditions can be used to express sta-
tic constraints (e.g., duration, purpose) as well as dynamic constraints (e.g.,
number of times to access a resource, location-dependent access).

In a similar manner to RBAC, UCON uses the concept of server-side ref-
erence monitoring for access control and trust management. However it also
leverages technologies of client-side reference monitoring to enforce usage con-
trol and digital rights management. It divides access rights into functional cat-
egories like Viewing a resource or Modifying a data object (e.g., a Physician
has privileges to view and update the Patient’s medical record).

3.3.3 Advanced Security Policies

Many industry scenarios impose complex security requirements. In this sec-
tion we introduce scenarios requiring some Advanced Security Policies. Some
of these use cases already stand as candidates for near future integration
into various industry-concerted initiatives (e.g., “Integrating the Healthcare
Enterprise (IHE)”-projects [4]) whereas others represent more an educated
guess based on discussions with experts on what the industries – especially
e-government and e-health – may be needing in a couple of years. All of them
are extensively covered in Chapter 11.

Dynamic Access Control Policies

In many security-critical scenarios, permissions to execute services cannot
be assigned statically. Instead, they are associated with a set of Dynamic
Constraints. Such constraints refer to subject, system or object attributes
and are evaluated at runtime.

Referring to our running example, a dynamic constraint could state the
following: “A Tax Advisor can modify any tax file records of Clients he is
mandating.” It is evident, that this condition has to be checked at runtime as
the undelying facts can change over time.

Delegation of Rights Policies (DRP)

DRP allow a user to delegate her rights to other legitimate users of the system
in specific situations with defined limitations. For example, in healthcare a
patient referral corresponds to such a policy: “A Primary Care Physician
delegates her rights to access an online Patient file to a Radiologist.”

In other scenarios the patient himself could want to grant access to the
specialist using the delegated rights of the primary physician [130]. DRP may
be further restricted: the rights of the delegatee may depend on additional
information such as her legal status, credentials, purpose, duration etc.

www.manaraa.com

3.3 Security Policies 37

Break-Glass Policy (BGP)

BGP is an authorization scheme granting access in case of emergency. An ex-
ample policy from healthcare could state the following: “An attending Physi-
cian can bypass routine access control restrictions to a Patient’s medical
records in order to provide timely treatment.”Hence, treatment can occur with-
out any delay due to administrative or technical complexities (e.g., [173, 116]).
As an additional safeguard against misuse access could be logged providing
evidence in case of abuse.

4-Eyes-Principle

The 4-Eyes-Principle is a form of Multiple Authorization. It requires two users
with a common interest to access the system simultaneously. This principle
supports monitoring of the data access, e.g., when one user accesses data
the other user monitors it (e.g., [182]). In a healthcare scenario, the 4-Eyes-
Principle could state that “The Patient needs to be present when a Physician
accesses her records.”

The physician’s access is logged during the visit by some trusted Proxy
Service. Enforcement of the 4-Eyes-Principle is usually performed indirectly
and supported with storing the access record into a logging database for fu-
ture auditing. Logging and auditing capabilities permit the patient to set her
privacy preferences based on access history and support the identification of
potential abuse.

Usage Control Policies (UCP)

A UCP is an extension of access control because it does not only control data
access but also how accessed data may or may not be used or distributed
afterwards. In a healthcare scenario a usage requirement could state that
“Access to tax files is allowed for 5 times only and should last for at most 48
hours, after its first access.”

Qualified Signature

In many e-government applications, a system signature is not legally binding.
For example, filing your income tax return online with a typical e-government
application, the “technical” signature provided by your application or even
the security gateway at the organization’s domain boundaries is not sufficient
when submitting a document. In such a case legal regulations may stipulate
that the signatory be a natural person (e.g, the Austrian E-Government Law
[158]). This requirement extends the concept of digital (system) signatures to
the Qualified Signature, requiring the signatory be a natural person.

www.manaraa.com

38 3 Security Policies

Privacy Policies

In healthcare, a patient is still to be considered the owner of his records. He
retains legal rights over his medical records. Patients concerned about who
may read their records could want to define a “Privacy Policy” restricting
access to data even if scattered over many repositories.

In public procurement, Anonymity of Bidders is guaranteed by a specific
security protocol and in most cases requires a trusted third party. Anonymity
of Bidders can be considered a variant of a Privacy Policy.

3.4 Security Analysis

A Security Policy is enforced through one or more Security Controls. The
dependency between policies and controls needs to be constantly evaluated in
the light of Security Objectives targeted, underlying assumptions, and looming
threats: this is done during Security Analysis – an on-going evaluation process.

3.4.1 Security Requirements

In contrast to a Security Policy which is used for the management of security
(e.g., during runtime) as a set of statements of what is allowed, and what
is not, Security Requirements focus on the early stages of enigneering, the
elicitation phase.

A Security Requirement is a detailed context-dependent explication of a
Security Objective. It breaks a Security Objective down into several more
detailed descriptions based on the results of Security Analysis.

Security Requirements also play a role when defined in context of systems
evaluation: security evaluation techniques (e.g., TCSEC [16], ITSEC [11], CC
[12]) guarantee that a system may qualify as a trusted system when meeting
specific Security Requirements under specific conditions. Standardized, these
methodologies provide a measurement of trust based on specific security re-
quirements and evidence of assurance.

We will perform a detailed Security Analysis in the context of use cases
for e-government and healtcare systems in Chapters 6 and 12 respectively.

3.4.2 Attacks

Attacks can inflict some kind of loss or harm on computing systems. At its
very core computer-based security revolves around three main forces: Threats,
Security Controls and Vulnerabilities.

Potential attacks may be the same for SOA as for traditional information
systems inside a particular partner node (e.g., malicious software, buffer over-
flows, trojans, denial of service attacks, cryptoanalysis). They may be based
on the same vulnerabilities (e.g., missing user awareness, flawed code and/or

www.manaraa.com

3.4 Security Analysis 39

design, wrong administration etc.), and can thus be countered by the same
security mechanisms.

Nevertheless, the properties of SOA open the door to a category of spe-
cific threats. These threats have to be countered with dedicated technologies
catering to the specificities of SOA. As we will see, most of these technologies
– the so-called security controls – are based on SOA and Web services stan-
dards. We will cover threats and securtity controls specifically in context of
SOA subsequently.

Threats and Vulnerabilities

A Vulnerability is a flaw in a system’s design or its implementation. It is
a weakness that might be exploited to cause a system to malfunction, ulti-
mately resulting in some harm or loss. However, a vulnerability may remain
undetected and not be exploited at all.

A Threat is a specific set of circumstances that bears the potential to cause
loss or harm. A threat remains a potential violation of security. It material-
izes into an attack when a subject (a person or another system) exploits a
vulnerability and attacks the system.

Threats can be divided into four broad classes (cf. [53] and [178]):

1. deception which corresponds to the acceptance of false data
2. disclosure resulting in unauthorized access to information;
3. disruption preventing correct system operation;
4. usurpation leads to the unauthorized control of some part of a system.

In the following we give examples attack vectors that may be launched
in the context of SOA architectures and specifically leverage technical vul-
nerabilities, rooted in the implementation of underlying technologies (as in
[91]).

XML-specific Attacks. The use of XML for messaging makes the
infrastructure particularily prone to attacks targeting those components
processing the messages (be they part of the security- ot the services in-
frastructure). XML-bombs (XML documents with endless recursions), X-Path
injections (a technique used to exploit Web services by crafting malicious
XPath queries as user-supplied input) and schema poisoning (a modifications
of a message’s grammatical structure (XML Schema) leading to inconsis-
tencies) may at least render the infrastructure unavailable and at worst
compromise the whole system opening access to unauthroized users. Here,
a validation service acting as a security proxy or “filter” to any application
service can efficiently counter the threat.

Service Scanning. Reconnaissance (aka footprinting) is the activity nec-
essary to a successful operation against a target (e.g., an application, a host
in a network, or a service). It refers to information-gathering behavior that
aims to profile the target in order to identify efficient attack tactics. It is

www.manaraa.com

40 3 Security Policies

evident, that in SOA publicly available information on services (methods, pa-
rameters etc.) in their WSDL files could be used for a systematic analysis for
weaknesses, for example through automated tests – so-called fuzzying.

Compromised Services. In a distributed scenario service information
needs to be retrieved through a service repository. The service repository may
hold information on a manipulated, compromised service. This threat can
only be countered by authenticating the service provider and checking upon
his trustworthyness.

Replay Attacks. One of the most evident attacks on SOA is based on
a central property of Web services: their statelessness. As a consequence of
that, an attacker could simply intercept a message from an earlier call for
a service request and replay it to that service at a later point in time. In
case service requests are coupled with costs (e.g., retrieving a Tax File from
a Municipality) this has the potential to inflict serious damage.

A system providing a service never remembers which messages already
where processed. This necessitates a mechanism to firstly, authenticate a
message, e.g., through a digital signature and a timestamp and, secondly,
to provide some application level state information. The latter could be im-
plemented through the security infrastructure which keeps status information
on messages received and would simply dismiss a replayed message.

For an exhaustive account on technical attacks on SOA architectures, the
interested reader may refer to [177].

Most of these attack vectors leverage technical vulnerabilities. However,
the Security Analyses in Chapters 6 and 12 will basically cover applica-
tion layer threats like Eavesdropping through compromised communication
channels (e.g., the channel between the Tax Advisor Server and and the Munic-
ipality Application Server may be compromised) and Unauthorized Access
due to faulty configuration (e.g., access to the service sendAnnualStatement is
not properly configured; services may thus be accessible to companies offering
tax sevices which are not anymore actively involved in the scenario).

Security Controls

A Security Control is broadly defined as any managerial, operational, and/or
technical safeguard put into place to mitigate identified risks. This rather
general definition especially applies when performing a Security Analysis (e.g.,
during requirements engineering).

For our purposes – when designing, implementing or managing a security-
critical system – we narrow down the definition to any technical, architectural,
or mathematical concept that counters a specific Threat in order to enforce a
Security Policy.

In the context of SOA, Web Services Security Standards leverage these
techniques, algorithms and mechanisms, and thereby abstract from specific
implementational details (e.g., application programming interfaces, manage-
ment architecture, protocols etc.).

www.manaraa.com

3.5 Web Services Security Standards 41

We hence differentiate between Technical Security Controls and Web Ser-
vices Security Standards.

Technical Security Controls are generally categorized according to their se-
curity function (e.g., Identification and Authentication, Access Control, Audit
and Accountability and Systems and Communication and many more [168]).
Each one leverages one or more technical, architectural, or mathematical
concept (e.g., public- or secret key cryptography for confidentiality through
encryption, for integrity, identification and authentication through digital sig-
natures, message protocols for the establishment of trust and accountability,
the use of reference monitor for access control etc.). Technical Security Con-
trols accross various layers and tiers (application, operating system, network-
ing, middleware, database etc.) are extensively covered in literature (e.g., [53],
[162], [78]).

Henceforth, we will only cover Technical Security Controls in context of
their integration into Web Services Security Standards in the next section
(Section 3.5) as well as in later chapters when designing and realizing enforce-
ment architectures for various policies in the use cases (Chapters 8 and 11).

The integration into the various Web Services Security Standards and
specifications is also extensively covererd in literature, e.g., in [167], [156], and
[114]. For a good overview covering these security standards see e.g., [143].

3.5 Web Services Security Standards

3.5.1 Confidentiality, Integrity, and Authenticity

Basic security objectives targeting message security, like Confidentiality, In-
tegrity of data and Integrity of origin (authenticity) are covered by the three
basic security standards: WS-Security, XML-Digital Signature, and XML-
Encryption.

OASIS proposed an extension of the SOAP message structure to enable the
addition of security features to Web services based messaging: WS-Security
is the basic building block for secure interactions in scenarios on top of Web
services technology [37]. The specification describes how to embed security
tokens in the header of SOAP messages. These tokens may be used by senders
and/or recipients to digitally sign and encrypt the message or parts of it. WS-
Security also specifies how to embed these encrypted and signed parts within
the SOAP message.

Example: Figure 3.1 shows how the security infrastructure at the Com-
pany’s side would first encrypt the application relevant data to some cipher
value with a symmetric encrytpion scheme (triple-DES-cbc) and then embed
that value as an encrypted string according to the standards XML-Encryption
and XML-Digital Signature. The symmetric key is encrypted with the recipi-
ents public key based on an RSA encryption scheme.

www.manaraa.com

42 3 Security Policies

Fig. 3.1. Application Data Encrypted According to XML-Encryption and XML-
Digital Signature

In the example, the second cipher value refers to the symmetric key en-
crypted with the recipients public key based on an RSA encryption scheme.
Upon reception and once decrypted, the recipient (Tax Advisor) uses this key
to decrypt the first cipher value. This means that the interaction partners
are relying on a hybrid crypto scheme to secure their communication. The
advantage over using pure public key cryptography lies in better performance
during encryption and decryption.

WS-Security in turn relies heavily on the underlying XML-standards XML-
Digital Signature [43] and XML-Encryption [119] for the signing and encryp-
tion of XML documents. Both standards specifiy a process for encrypting or
signing arbitrary application data and representing the result in XML format.

Example: Figure 3.2 shows how the security infrastructure at the Com-
pany’s side would then embed the XML structure with the cipher value in
the SOAP message structure according to WS-Security before calling the Tax
Advisor’s service and thereby sending the document.

Vendors and Open Source Initiatives are beginning to offer reference im-
plementation of these standards. For example, Web Services Security for Java
(WSS4J) [89] is a prototypic extension of the Apache Axis SOAP engine [189]
that implements the standard.

3.5.2 Authentication

The process of authentication binds an identity to a subject. Authentication is
a technical means to achieve the premises to any non-anonymous interaction.

Authentication is integral to many policies as an implicit prerequisite.
For example, an Authorization Policy stating that a Tax Advisor can access
his Client’s tax files implies the existence of an underlying authentication

www.manaraa.com

3.5 Web Services Security Standards 43

Fig. 3.2. Encryted XML Embedded in SOAP Message According to WS-Security

mechanism checking the identity of the requester. Before a request can be
evaluated and access granted or denied the requester has to be authenticated.
In our context authentication is neither a Security Objective nor a Security
Policy. It is considered a technical concept.

Authentication may generally be performed based on:

• something the subject may know (e.g., pin, password, pass phrase, shared
secret),

• something the subject may possess (e.g., key, card, token), or
• physical attributes of the subject (e.g., biometrics).

In SOA, authentication occurs at the application- or the SOAP layer in-
stead of relying on transport- and HTTP-layer authentication schemes (e.g.,
SSL and TLS). The reasons are, for one, that transport layer security is lim-
ited to point-to-point interactions, and two, that applications cannot directly
retrieve security context information (username, role and/or password of re-
quester) from the transport layer.

Leaving authentication to the application inevitably leads to interoperabil-
ity problems: in a distributed, heterogenous environment the various applica-
tions at the endpoints will, in all likelhood, implement proprietary solutions.
Securing communication between all peers turns into a nightmare.

Thus, the most efficient way to realize authentication in SOA, is the in-
tegration of security mechanisms in the SOAP message structure. However,
SOAP does not provide a specific security model for its protocol. Instead,

www.manaraa.com

44 3 Security Policies

it supports security extensions inside the SOAP headers for various security
models and mechanisms. WS-Security is designed to incorporate existing se-
curity mechanisms for authentication (e.g., X509 certificates, Kerberos tickets,
username tokens etc.). The way on how to embed a specific format is defined
in token profiles.

Nevertheless, WS-Security does not support much beyond its capability
to integrate security tokens. These tokens, incorporating security claims, need
to be verified, policies need to be advertised, tokens may need to be mapped
from one technology to another etc. This is covered by Advanced Web Services
Security Standards building on top of the three basic standards.

3.5.3 Advanced Web Services Security Standards

In this section we briefly introduce advanced Web services standards. The
specifications cover application level security concerns that go much beyond
what can be covered trough the standards presented in the last section. We
confine ourselves to a verbal description without giving code examples as the
relevant standards will be covered in-depth as needed in the second part of
the book.

The Extensible Access Control Markup Language (XACML) is an OASIS
standard supporting the specification of authorization policies to access (Web)
services [147]. The standard defines a language for the formulation of policies
and describes the messages for related queries between components of the
security infrastructure. It specifies functionalities needed for the processing
of access control policies and defines an abstract data flow model between
functional components. The Role Based Access Control Profile of XACML
2.0 extends the standard for expressing policies that use Role Based Access
Control (RBAC) with a scope confined to core and hierarchical RBAC [29].

Example: The Tax Advisor may want to control access to his local services
by his employees or external parties through a reference monitor acting as a
security proxy to Web services. Every service call would be intercepted, the
requester authenticated through some credentials (e.g., message signature),
and his rights would be checked against a machine-readable policy stored in
XACML format. Once access granted, the service request is forwarded to the
application.

XACML is closely related to the Security Assertion Markup Language
(SAML), which is the XML-based framework for exchanging security asser-
tions [67]. SAML is integrated into XACML as a profile [30]. It supports the
integration of further security-related information – so-called assertions – into
the SOAP header.

Example: In a slightly more complex scenario involving many parties,
the Tax Advisor may only want to authenticate once (e.g., with an identitiy
providing third party), to get an assertion in the form of an Authentication
Statement and have this information propagated automatically through tokens

www.manaraa.com

3.5 Web Services Security Standards 45

when accessing services of further parties (e.g., Municipality, Notary etc.).
These parties can check up with the party that issued the assertion.

The XML Key Management Specification (XKMS) describes how devel-
opers can integrate access to Public Key Infrastructures in order to secure
inter-application communication especially in SOA environments [113]. The
specification describes how to use XML- and Web services based interfaces
and protocols to third parties providing “expensive” cryptographic services.
XKMS consists of two parts - the XML Key Information Service Specification
(XKISS) and the XML Key Registration Service Specification (XKRSS). The
specifications define specific protocols that can be used for the exchange of
messages between an XKMS client and an XKMS server implementation.

Example: The Tax Advisor could rely on XKMS messaging to retrieve
certificates from a trusted third party (e.g., certificate authority) to verify the
signatures of parties he needs to authenticate.

WS-Trust [33] is based on the security mechanisms of WS-Security and de-
fines an extensible model for establishing and maintaining trust relationships
across security domains. In SOA, trust is usually realized through the issuance,
exchange and validation of security tokens, services offered by a Security To-
ken Service. WS-Trust also defines necessary extensions to the SOAP message
structure as well as the protocol bewteen parties relying on and offering the
services.

Example: Any peer in the said scenario may need to get some credentials
in the form of security tokens from a Security Token Service for authentication
with his partners. The format for requesting the tokens is described in WS-
Trust. Another example would be the request to a Security Token Service to
map from one format (e.g., username token) to another (e.g., Kerberos ticket).

WS-SecureConversation offers features for the establishment of a context
for secure communication similar to the concept of HTTPS [32]. Instead of
leveraging transport layer security it is based on application-level messaging.
It is a protocol that uses a concept based on public keys for the exchange
of session keys for message encryption and signature. It thereby provides en-
hanced efficiency.

WS-Federation realizes the concept of federated security, which allows a
set of stakeholders to define a virtual security domain [41]. The specification
standardizes the way companies share identities with each other. This is the
case whenever authentication and authorization systems are spread across cor-
porate boundaries. Together, WS-Trust and WS-Federation provide a model
to create and broker trust within and across federations.

Example: The Tax Advisor may want to communicate (over Web services
interaction) with regular partners in a more efficient way. He could do so by
establishing and sharing a security context with e.g., the Municipality. This
would also allow him to derive much more performant session keys to secure
communication. This increases the overall performance and the security of
subsequent exchanges.

www.manaraa.com

4

Domain Architectures

In this chapter, we establish a frame of reference for terms and concepts related
to Model Driven Software Development (MDSD). The core concept of MDSD
is the Domain Architecture. It represents the conceptual framework for the
realization of engineering activities according to the paradigm of MDSD.

This chapter is organized as follows. We start with an explanation of how
the present work relates to existing approaches, like the OMG’s Model Driven
Architecture, and extends the concept of MDSD towards Model Driven Secu-
rity (Section 4.1). We give a precise definition of our understanding of Model
Driven Software Development (Section 4.2), followed by a definition of three
building blocks (Sections 4.3, 4.4, 4.5) of the abstract concept of a Domain
Architecture (Section 4.6). The Domain Architecture is usually implemented
with a framework for MDSD (Section 4.7). Taking a special focus on secu-
rity engineering, we specialize the concept of a Domain Architecture to Model
Driven Security (Section 4.8).

4.1 Model Driven Software Development

Meta-modeling is a key activity in Model Driven Software Development
(MDSD). Meta-models specify the abstract syntax – the language – of the
concepts that need to be modeled. MDSD aims at facilitating transforma-
tions, taking models as input (source) and generating either code or models
as output (target). Transformations from source to target models are defined
on the basis of source and target meta-models. Code generation uses code
templates defined on the basis of meta-models of the target language. In the
sections to follow, we provide a brief sketch of those concepts. We will need
them for the realization of the Sectet-approach.

www.manaraa.com

48 4 Domain Architectures

4.1.1 The Unified Modeling Language

The Unified Modeling Language is the software industry’s de-facto standard
for software modeling. It is a wide-spread graphical language for modeling
object-oriented systems. Many tools implement the standard and define pro-
files for various specific modeling purposes.

The specification differentiates between the abstract syntax and the nota-
tion of a language. The abstract syntax defines the language elements used to
build models. It is independent of the notation (also called concrete syntax)
which defines the graphical representation of these syntactical elements. UML
supports the description of structural and behavioral aspects of a software
system by different model element types and corresponding diagram types.

Generally, the advantages of using UML 2.0 for MDA are the following
(adapted from [92]):

1. Separation of abstract and concrete syntax
2. Extensibility trough profiling mechanisms
3. Platform independence
4. De-facto industry standard
5. Object constraint language (OCL) tightly integrated

In our work, we use the version 2.0 of UML ([195] and [193]) for the mod-
eling of various aspects of security-critical scenarios. For example, Activity
Diagrams are used to specify inter-organizational workflows (e.g., the inter-
action between the Company, the Tax Advisor and the Municipality in our
example in Section 2.1.2 on page 16) as well executable processes (e.g., an
executable BPEL Process for the Workflow Management System of the Tax
Advisor). Class Diagrams are used for the modeling of service interfaces (e.g.,
the Web service sendAnnualStatement offered by the Tax Advisor), docu-
ments (e.g., the annual statement sent to the Tax Advisor) and role models
(e.g., the roles Junior Clerk, Senior Clerk and Chartered Accountant inside of
the Tax Advisor’s domain).

Nevertheless, we use the mechanisms of the Meta-Object Facility for the in-
tegration of the various models into one “language”. The modeling of security-
critical scenarios as well as the integration of all models at the meta-level is
covered in Chapter 7.

4.1.2 The Meta-Object Facility

Meta-models describe possible model structures. They define the language
elements, also called the abstract syntax, and the context-dependent meaning,
the static semantic, of a modeling language. The abstract syntax of a modeling
language needs to be modeled with a meta-modeling language, which itself also
needs to be defined. Seen in this way, the notion of meta-model is actually a
concept that has to be understood in relative terms; theoretically, the cascade
could be set forth endlessly.

www.manaraa.com

4.1 Model Driven Software Development 49

Fig. 4.1. The Four Levels of the MOF Meta-model

The OMG’s Meta Object Facility, which is at the core of the MDA ap-
proach, uses models for specifying metadata; these models are called meta-
models. The modeling framework of MOF - actually a subset of the UML -
supports the definition of modeling languages. The OMG provides a mapping
of the meta-model to XML (XML Metadata Interchange [152]). Together with
application programming interfaces in various languages this can be used to
build repository infrastructures, with model elements that can be accessed
and processed with various languages (Java Metadata Interface). The MOF
Metadata architecture is a reference model for meta-modeling. It identifies
four model levels (Figure 4.1).

The instance level (M0) and the model level (M1) are those concepts famil-
iar to the developer of object-oriented software systems. In M1, the developer
defines classes, that are instantiated to objects at the M0 level.

The M2 level provides the means to model concepts needed for the M1
level. For example, the object-oriented concept of a class and its related at-
tributes is defined at the M2 level through class elements defined in the MOF
meta-model. M2 level elements are themselves instances of the MOF meta-
meta-model class elements (M3).

The UML is a modeling language that is defined and formalized at the M2
level. For example, the UML concept of a class and its attributes and their
relationship is defined at the M2 level in the UML Infrastructure [193].

We will use the MOF for the integration of all models at the meta-level
(cf. Chapter 7). Our work is based on version 1.4 of the MOF [154].

4.1.3 Model Driven Software Development

The paradigm of Model Driven Software Development (MDSD) evolved as a
response to challenges imposed by productivity and risk management issues in
the ever changing complex area of software engineering. Its primary purpose
was to alleviate the burden by offering tools and methods to counter the prob-
lem at its roots: streamlining of the software engineering process, switching to

www.manaraa.com

50 4 Domain Architectures

open software architectures and supporting the management of dependencies
between components [180].

Whereas at the beginning of the 90ies, software engineering was heavily
dominated by the paradigm of Computer Aided Software Engineering and
Fourth Generation Languages, the last years of the decade saw the emer-
gence of tools supporting the new paradigm of Object Oriented Software De-
velopment, which among other things brought about the Unified Modeling
language. Powerful modeling tools and integrated development environments
supported the new notation and promised a significant gain in productivity
by offering wizards that could generate code skeletons for classes and even
code for graphical user interfaces out of customizable blueprints.

But still, the tools did not live up to the promise; they were too inflexible
in terms of change management. The propagation of changes in the design
of a component could not be propagated through all the levels of abstrac-
tion. These circumstances led to the emergence of the OMG initiative “Model
Driven Architecture”, whose basic premise is the promotion of standards and
methods for the engineering of software systems guaranteeing a minimum level
of portability and Interoperability.

4.1.4 Model Driven Architecture

The main idea behind Model Driven Architectures (MDA) is the switch of
focus from technical detail to more abstract concepts – so called models – that
are principally more stable, more intuitive, and would change less. In software
engineering, a model is an abstract representation of some system structure,
function or behaviour. This basically means that through the use of models,
MDA addressed a much broader audience. Additionally, the concepts were
valid for a much longer period of time.

In MDA, a concept is basically captured through models at various levels
of abstraction. The OMG’s paradigm of Model Driven Architectures specifies
three levels of abstraction:

• The Platform Independent Model captures the domain level knowledge
and abstracts from implementation details of the target architecture.

• The Platform Specific Model (PSM) describes the system on its intended
platform (e.g. BPEL4WS) by integrating platform specific syntax and se-
mantics.

• The Implementation Specific Model (ISM) represents the reference archi-
tecture that acts as the runtime environment at local partner nodes.

Applying the MDA approach means capturing abstract domain-level spec-
ification in a PIM, transforming the PIM into a PSM through Model-to-model
Transformation and / or transforming either the PIM directly or the PSM into
an ISM through Model-to-code Transformation.

We extend the MDA approach towards Model Driven Security in the sense
that we integrate security requirements at the abstract level into the PIM.

www.manaraa.com

4.2 A Definition of Model Driven Software Development 51

The PIM and the PSM are mapped onto each other and finally translated
into configuration artefacts for the runtime environment.

4.1.5 Model Driven Security

The growing popularity of standards related to Web services, workflows
and security during the past years fostered the implementation of power-
ful infrastructures supporting interoperability for inter-organizational work-
flows. The paradigms of Model Driven Software Development and specifi-
cally Model Driven Architecture (MDA) made it possible to realize their full
potential [92].

The OMG is promoting the approach of MDA and the use of related stan-
dards like UML and MOF as a means for the reduction of development costs
and the improvement of application quality. Model Driven Security Architec-
tures (e.g., [45]) extend the MDA approach in the sense that the Platform
Independent Model integrates security requirements and the Platform Spe-
cific Model specifies a target reference architecture acting as the security in-
frastructure for the runtime. Security requirements map to executable (XML-)
artifacts onto the platform.

4.2 A Definition of Model Driven Software Development

Model Driven Software Development (MDSD) is a technology and standards
independent engineering methodology based on the concept of Models1. Mod-
els describe system aspects significant to a particular problem, in that way
abstracting from the system under study up to a certain level. Models can be
defined as [174]:

“a set of statements about some system under study.”

The degree of abstraction depends on the problem’s nature. Useful mod-
eling requires the application of abstraction techniques like Reduction, which
is the selection of relevant properties, Generalization, which is the selection
of relevant similarities between otherwise different elements to form an entity,
and Classification, which is the identification of different types or concepts.

The concept diagram in Figure 4.2 depicts the concepts and notions used
in MDSD and the relation between them. For an engineer, a Problem Space
structures the real world, by focusing on a specific set of problems (e.g., how
to model security-critical worklfows in e-government). It allows him to express
the issues of concerns with a spezialized terminology tailored for his world of
expertise – his Domain. The Solution Space is related to the Problem Space

1 This is why we use MDSD instead of MDA, which is associated to an array of
specifc standards (e.g., UML and MOF), for the clarification of our concepts.

www.manaraa.com

52 4 Domain Architectures

Fig. 4.2. Concepts of Model Driven Software Development

as it offers the means to design solutions (e.g., security architectures, manage-
ment procedures etc.) to those problems. In the engineering world, the solution
often corresponds to a specific system design or even implementation, which
is called a Reference or a Target Architecture.2

Models are used to reason about problems in a specific Problem Space,
and to design solutions in the language of the Solution Space. The Problem
Space is formally captured through one or more Domains. A Domain can be
defined as [180]:

“. . . a field of application delimitated by a specific area of interest.”.

Accordingly, the knowledge about the “area” (aka Domain) is systemati-
cally captured through ontologies, which are abstract representations of enti-
ties relevant to the envisaged context.

4.3 Domain Specific Languages

Key-aspects of a Domain’s Problem Space are expressed with the help of a
graphical or textual modeling language in a formal way. More specifically, a
Domain Specific Language (DSL) is a [203]:

“. . . concise, precise and processable description of a viewpoint, con-
cern or aspect of a system, given in a notation that suits the people
who specify that particular viewpoint, concern or aspect.”.

The concept diagram in Figure 4.3 shows the main dependencies of the
concept and notions of Model Driven Software Development around its central
term: the Domain.

2 We use the term Reference Architecture in context of the Sectet-framework.

www.manaraa.com

4.3 Domain Specific Languages 53

Fig. 4.3. Relationship of Core Concepts in MDSD (Adapted from [180]

A Domain is defined with the help of one or more meta-models. Also
known as the domain’s abstract syntax, a meta-model defines the elemental
syntactical blocks for capturing a particular problem or scenario in a formal
way in terms of a model. A model is a particular instance of the meta-model.

The Concrete Syntax defines possible notations for the use of the language,
which can be either graphical or textual.

The Semantics of a language capture its meaning in context and define
criteria for an expression’s or a model’s well-formedness. Semantics either can
be defined formally or should at least be documented in some informal, verbose
way. The degree of formality is not to be mistaken by the differentiation
between textual or symbolic languages, which are often thought to be the only
means to a rigorous formalization, and visual and diagrammatic languages,
relying on visual formalisms.

All three concepts together form a Domain Specific Language correspond-
ing to a modeling language that captures key-aspects of a Domain’s Problem
Space in a formal way. A DSL for our example from Section 2.1.2 would allow
a security engineer to capture all security aspects relevant to security-critical
worklfows in e-government. In Chapter 7 we will show how to elaborate the
DSL for that specific Domain.

www.manaraa.com

54 4 Domain Architectures

Fig. 4.4. Relationship between Domain and Target Architecture

4.4 The Target Architecture

The Target Architecture (TA) represents the target (runtime) for the realiza-
tion of the Domain (Figure 4.4). TA implements application functionality and
supports non-functional requirements, like performance, scalability, and secu-
rity. The building blocks of a TA are components, modular software entities,
which are accessed through an interface.

We generally differentiate between Service Components , which implement
application functionality, like the workflow engine or modular Web services
and Security Components, which enforce Security Objectives specified as Se-
curity Policies. The component infrastructure provides the technical under-
pinning of the TA and acts as a middleware integrating the components.

In Chapter 8 we will design a Target Architecture for the enforcement of
security at the partners’ nodes .

4.5 Model-(to-model-)to-code Transformation

MDSD aims at facilitating transformations, taking models as input (source)
and generating either code or models as output (target). The concept of Trans-
formation links a source Domain to a target Domain. Figure 4.5 shows the
types of transformations along two dimensions.

Horizontal Transformations take a source model and transform it into a
target model thereby staying at the same level of abstraction.

www.manaraa.com

4.5 Model-(to-model-)to-code Transformation 55

Transformation Types in Model Driven Software Development

As an example, Horizontal Transformations are performed for refactoring
purposes – a controlled technique of software engineering where code elements
(or model elements at the same level of abstraction) are rearranged in order
to improve the design. It can be seen as an informal activity – also phrased
as “cleaning up” the code – without changing the code’s external behaviour
or the intended purpose in case of model refactoring [90].

Vertical Transformations transform a source model into a target model
whose level of abstraction is closer to the Reference Architecture, resulting
either in a Platform Specific Model, with some semantics of the technical
platform captured in the models or an Implementation Specific Model, which
corresponds to executable code (Please refer to Section 4.1.4 and [151] for
more information on PIM, PSM, and ISM).

In the case of Model Driven Software Development, a transformation
primarily links the Domain to the Target Architecture (Figure 4.5). We
differentiate between Model-to-code Transformation and Model-to-model
Transformation. Both take an instance of the source meta-model as in-
put. Model-to-model Transformation generates a model based on a target
meta-model, whereas Model-to-code Transformation produces platform and
implementation specific generated Code Artifacts, in our case by taking
templates that capture the idioms of the Target Architecture and filling in
relevant parts.

We will use Model-to-model Transformation to generate some model el-
ements for executable BPEL processes out of the specification of an inter-
organizational workflow modeled as a UML Activity Diagram in Chapter 9.
Model-to-code Tansformation will be used for the generation of the executable
Security Artefacts also in Chapter 9.

Generated code can be adapted manually to a Modified Artifact. Both
artefacts – Modified and Code Artifacts – configure components of the RA
(Figure 4.6).

www.manaraa.com

56 4 Domain Architectures

Fig. 4.6. Relationship between Main Concepts of Model Transformation

4.6 Domain Architecture

A Domain Architecture consists of the Domain Specific Languange consisting
of the domain’s meta-models (cf. Section 4.3), the Target Architecture (cf.
Section 4.4) and all the transformations (cf. Section 4.5).

We define a Domain Architecture as a ([165]):

“. . . generic, organizational structure or design for software systems
in a domain. The domain architecture contains the designs that are
intended to satisfy requirements specified in the domain model. A do-
main architecture can be adapted to create designs for software systems
within a domain and also provides a framework for configuring assets
within individual software systems.”

www.manaraa.com

4.8 Model Driven Security 57

4.7 Framework

A Framework consists of a suite of tools supporting the realization of exten-
sible and adaptable concepts. A framework for Model Driven Software Devel-
opment supports the implementation of Domain Architectures by providing
tools for one or more of the following tasks:

1. extending the meta-models of the Domain Specific Language
2. building the models (e.g., graphically like UML tools)
3. testing and validating the models and the transformations
4. specifying mappings between model elements and transformations
5. modifying generated artefacts
6. deploying the configuration artefacts
7. monitoring the Reference Architecture
8. versioning and release management

As an example, the Domain Architecture for securitiy-critical inter-
organizational workflows in e-government is implemented with the Sectet-
Framework (cf. Chapter 5).

4.8 Model Driven Security

4.8.1 Definition

The goal of Model Driven Security (MDS) is the definition of a generic frame-
work supporting the systematic transformation of models integrating security
requirements to executable artefacts for configurable security architectures.
An MDS-framework realizes an extensible Domain Architecture for security-
critical (application-) scenarios.

4.8.2 Extensions to the Problem Space

Figure 4.7 shows the extensions to the Problem and Solution Space of Model
Driven Software Development resulting in Model Driven Security.

Modeling Extensions

First, the extension introduces the abstract concept of Security Concerns into
the Problem Space. If security is considered as the condition of absolute pro-
tection against harm, loss, and danger, we can define a Security Concern as
the sum of all known and unknown threats to the state of security in terms
of a specific security target. An example Security Concern may be related to
the threat that an unauthorized third party may read the Company’s tax file
due to some leaks, flawed security administration, or missing awareness on the
Tax Advisor’s side.

www.manaraa.com

58 4 Domain Architectures

Fig. 4.7. Conceptual Security Extensions for Model Driven Security

A Security Objective specializes the abstract notion of Security Concern
by setting a domain specific context (e.g., confidentiality of a tax file sent from
the Municipality to the Tax Advisor in an inter-organizational workflow).

A Security Policy – or a Security Requirement in the context of a Security
Analysis – ultimately realizes a Security Objective based on a specific security
concept (e.g., realizing confidentiality by granting access to confidential data
to authopized peers based on their roles). The enforcement of a Security Policy
is guaranteed by mostly technical mechanisms of the Reference Architecture
(cf. Section 4.8.2).

Enforcement Extensions

The transformation process takes a Security Policy and produces Security
Artefacts. The latter configure Security Components that provide all services
needed for the enforcement of one or more specific abstract Security Patterns
– a concept currently getting a lot of attention as a promising approach to
efficient security engineering.

A security pattern can be defined in the following way [172]:

“A security pattern describes a particular recurring security problem
that arises in specific contexts, and presents a well-proven generic so-
lution for it. The solution consists of a set of interacting roles that
can be arranged into multiple concrete design structures, as well as a
process to create one particular such structure.”

Patterns can potentially be identified at any level of abstraction, and,
could thus be considered as an omnipresent concept in Model Driven Security.
Model Driven Security integrates the concept, but it does so by applying
the concept to the technical layer. Secure solutions are designed based on

www.manaraa.com

4.8 Model Driven Security 59

Security Patterns, hence capitalizing on best practices in the area of security
engineering.

For example Sectet’s Target Architecture is realized according to the
proxy pattern [172]: every service request is intercepted by a kind of security
filter implementing and enforcing the Security Policies. The design of the
Sectet Target Architecture is discussed into details in Chapter 8.

www.manaraa.com

Part II

Realizing SOA Security

www.manaraa.com

Part II Realizing SOA Security 63

In Part II, we show how to apply concepts of Model Driven Security to a
Problem Domain defined as“security-critical inter-organizational workflows in
e-governement”. This domain refers to a category of scenarios that feature spe-
cific patterns in their architectural design and thereby exhibit commonalities
in the nature of arising security concerns.

The goal of part II is the specification of an extensible software framework
that supports the realization and the management of SOA-based workflow sce-
narios according to the stated paradigm. The specification was implemented
as the Sectet-Framework for Model Driven Security. The framework imple-
ments a concept known as a Domain Architecture – a concept introduced in
Part I Chapter 4.

Part II is structured as follows. We start with Chapter 5, where we intro-
duce a motivating case study from e-government. This will serve as a running
example throughout Part II.

In Chapter 6 policy modeling is complemented by a Security Analysis
in context of the Problem Domain. Functional aspects of target systems are
modeled at various layers of abstraction thereby facilitating a comprehensive
analysis of security requirements and related risk. Advisable security controls
can be identified and serve as a starting point to the generation of executable
security services or artefacts.

In Chapter 7, we start building the first of the three blocks of the Sectet-
Domain Architecture, the Domain Specific Language (DSL). The design of the
DSL is implemented for a UML-based modeling tool and sample policies are
specified.

In Chapter 8, we present the Web-services based Reference Architecture
responsible for the enforcement of security policies at peer nodes. It represents
a blueprint for a runtime environment for functional as well as for Security
Components.

Chapter 9, bridges the gap between the policy models and the Reference
Architecture by introducing the Model-to-Code Transformator. The transfor-
mator takes the models as input and generates code for the configuration of
the Reference Architecture based on rules.

Chapter 10, discusses practical matters on how to manage the software
and security policies in a distributed, de-centralized environment.

We close Part II, with Chapter 11, where we show how the three building
blocks of the Sectet-framework can be extended to cope with a category of
advanced security requirements and policies – among them Dynamic Access
Control Policies, Rights Delegation Policies, the Qualified Signature, and Us-
age Control Policies. This Chapter does not describe a full implementation
but rather addresses key issues in Model Driven Security Engineering, many
of them subject to current scientific research. Nevertheless, we sketch a vi-
able path to proof-of-concept prototypes, that might be useful, but at least
relevant in an industrial setting.

www.manaraa.com

5

Sectino – A Motivating Case Study from
E-Government

In this chapter, we introduce a motivating case study from e-government. We
will illustrate the methodology for the systematic design and realization of
security-critical inter-organizational workflows with a portion of a workflow-
scenario drawn from the e-government use case “Municipal Tax Collection”.
The case was elaborated within the project Sectino, a joint research project
between the research group Quality Engineering at the University of Innsbruck
and the Austrian Research Centre Seibersdorf Research GmbH. The case will
serve as a running example throughout Part II.

The scenario describes the Web services based interaction between a tax
payer (the Company), a business agent (the Tax Advisor) and a public service
provider (the Municipality). The document flow between the actors will have
to comply to security policies based on basic security requirements like Con-
fidentiality, Integrity, and Non-repudiation. More advanced, complex security
requirements will be introduced in Chapter 11.

5.1 Problem Context

The project Sectino, was a joint research project between the research group
Quality Engineering at the University of Innsbruck and the Austrian Research
Centre Seibersdorf. Sectino started in May 2004 and ended in April 2006.

One of the project’s main goals was the analysis of security issues that
may specifically stem from the migration of a traditional paper-based work-
flow to a flexible and manageable e-government based solution. Flexibility and
usability in that context meant a “use-friendly” solution supporting the intu-
itive configuration and management of ever-changing scenarios. The solution
finally lay in a model-driven approach, where the necessary run-time artifacts
for the target architecture were generated through model transformation.

www.manaraa.com

66 5 A Motivating Case Study from E-Government

5.2 Project Mission

The mission statement of the project Sectino was phrased as follows :

“The development of a framework supporting the systematic realization
and management of e-government related workflows with a special em-
phasis on security requirements.”

The project’s vision was formulated with a focus on the domain of e-
government but the framework was to be generic enough to be applicable to a
broad array of scenarios from other industries. The ideas are currently applied
to the healthcare industry. The project deliverables were defined as:

1. a method for the systematic design of security-critical, inter-organizational
workflows.

2. a proof-of-concept prototype that allows for the systematic mapping of
design artefacts to runtime code.

3. a reference architecture for the implementation of secure workflows across
domain boundaries (based on Web services standards and technologies).

5.3 Expected Benefits

The project results were expected to lead to the following benefits:

1. Early integration of security into the engineering process: developers
would not need to care about the integration of security during the de-
velopment phase. Security requirements can be identified in the Analysis
Phase and specified as Security Policies in the context of the business sce-
nario. This should ideally happen in the language of the domain experts -
through an intuitive graphical modeling language. The resulting models
are directly configuring security components of a target architecture.

2. Correct implementation of security: the framework would automatically
transform the models into executable code artifacts configuring the se-
curity components relying on proven security mechanisms as public key
encryption, digital signature and logging etc.. This would guarantee the
correct implementation of the Security Requirements.

3. Flexible model-level adjustments: changes of Security Requirements during
development or adjustments to Security Policies during run-time would
only require model-level adjustments. The framework would take care of
reconfiguring the security components thereby supporting a flexible and
iterative approach to security engineering.

4. Abstraction from technology would be achieved through a generic archi-
tecture for SOA security: security components provide complex security
services based on standard security technologies and mechanisms. They

www.manaraa.com

5.4 Scenario Description 67

enforce security requirements by wrapping services or application com-
ponents. Through their modularity the components can be added to the
target architecture and configured as needed e.g., once the service com-
ponents are implemented.

5.4 Scenario Description

In Austria, wages paid to employees of an enterprise are subject to the munic-
ipal tax. According to the traditional process, corporations have to send an
annual statement via their tax advisor to the municipality. They get back a
tax assessment with the amount of due taxes. Communication is done through
traditional mail. As a motivating running example running throughout part
II as we realize our approach, we will consider a simplified “electronic” ver-
sion of the workflow: it describes the collection of municipal tax as a service
offered. In this scenario the interaction occurs through the exchange of digital
documents. The process had to be realized in a peer-to-peer fashion.

The workflow-scenario “Municipal Tax Collection” (Figure 5.1) describes a
collaboration interaction between three participants: a tax-payer (the Client),
a business agent (the Tax Advisor) and a public service provider (the Munici-
pality). The latter is responsible for collecting the tax. It checks the declaration
of the annual statement, calculates the tax duties and returns a tax assess-
ment notice to the tax advisor, who informs his client. The example illustrates
various aspects of the relationship between the externally observable choreog-
raphy, capturing the message exchange between all roles and related internal
process orchestrations of the individual collaborating partners’ nodes.

Fig. 5.1. The Online Version of the Process Municipal Tax Collection

www.manaraa.com

68 5 A Motivating Case Study from E-Government

5.4.1 Requirements

In our case, the stakeholders in this public administration process agreed to
implement a new online service, which offers citizens and companies to submit
their annual tax statements using Web services.

Legal Constraints and Assumptions

Due to various legal considerations, the process was realized in a decentral-
ized, peer-to-peer fashion. The workflow specification should integrate various
Security Requirements like Integrity, Confidentiality and Non-repudiation. We
assume that there is no central control of the inter-organizational workflow.
The workflow is designed by representatives of the partners involved in the
collaboration effort. Actions are allocated to specific partners in the Global
Workflow. Every action corresponds to some business logic implemented at a
partner node.

Use Cases

The distributed process involves three types of actors: the local governmental
authorities (Municipality), the citizens and/or the companies (Company) and
a group of business agents providing legal and financial consulting services
(Tax Advisor). The collaboration process was roughly specified as follows:

1. The Company sends an annual statement to its Tax Advisor;
2. The Tax Advisor does some internal processing on the document (e.g.,

formatting, complement legal data etc.);
3. The Tax Advisor forwards the processed annual statement on behalf of

his client to the Municipality;
4. The Municipality calculates the amount of tax duties;
5. The Municipality returns a notification to the Tax Advisor;
6. The Tax Advisor processes the notification;
7. The Tax Advisor informs the Company about its tax duties.

Steps 1, 3, 5 and 7 correspond to interaction activities in the choreography,
involving a peer-to-peer message flow between participants, whereas steps 2,
4 and 6 can be identified as being the “links” to the actors’ local business
functionality (e.g., applications, databases, services etc.), which would later
be realized as parts of executable local processes.

Figure 5.2 shows the use cases. The grey shaded bubbles, outside the boxes,
represent use case requirements local to every partner. Once agreed upon,
they are of no further relevance to the realization process of the collaborative
process scenario. They correspond to those parts of the scenario the role has
to provide to its partners. Local process steps remain opaque to interaction
partners. The use cases inside of the box capture those functionalities related

www.manaraa.com

5.4 Scenario Description 69

Fig. 5.2. Use Cases for the Process “Municipal Tax Collection”

to the interactions between the roles – also called the public part of a local
process. Every interaction consists of two parts, one initiating the sending
of a document and one waiting for reception of the document. The latter
then triggers the local workflow at the partner’s node. Notice: the sum of all
public process parts is called Process Annual Statement; it is a subset of the
inter-organizational workflow scenario “Municipal Tax Collection”.

5.4.2 Security Requirements

In this section we give an example of how a first iteration of a Security Require-
ments specification may be carried out. A comprehensive analysis is performed
in Chapter 6.

www.manaraa.com

70 5 A Motivating Case Study from E-Government

Security Analysis

Throughout the realization process, the participants have to make sure that
the security requirements, wich were first defined at the abstract level, in the
context of an inter-organizational collaboration, are reliably and consistently
modeled and implemented on the lower levels (this means at the local workflow
level and the component level). Security related aspects within the develop-
ment of inter-organizational workflows are tackled by the Security Analysis as
presented in Chapter 6.

Security Requirements Specification

In a first step, the business analysts specify Security Requirements guaran-
teeing basic end-to-end security in an inter-organizational workflow. For sim-
plicity, we confine ourselves to the interaction between the Tax Advisor and
the Municipality. The following requirements were identified:

1. Integrity: all exchanged documents have to be signed by the sending party
with a “System Signature” when leaving the domain boundaries in order
to guarantee message integrity.

2. Confidentiality: specific parts of the document “annual statement” - flow-
ing from the Tax Advisor to the Municipality - and the returned “notifi-
cationŤ are confidential, and should only be readable to the Municipality
and the Tax Advisor, respectively. This concerns information referring to
the annual income and the tax identification number.

3. Non-repudiation: the reception and the sending of the documents “annual
statement” and the “notification” must not be deniable.

In many e-government applications, a technical signature is not sufficient.
In our case, the partners additionally specified that the document “notifi-
cation” sent by the Municipality has to be signed personally by at least two
clerks (which corresponds to a“Qualified Signature”according to the Austrian
E-Government Law [158]). Although we may integrate advanced security re-
quirements, like the Qualified Signature at the meta-model level, we primarily
focus on the three basic end-to-end security requirements for our running ex-
ample. The set of supported security requirements is extended in Chapter
11.

5.5 Results

At the end of the two years term, the project efforts materialized into a proof
of concept demonstrator proving the applicability of the concept of Model
Driven Security in an industrial context. Basic Security Requirements were
identified, Security Policies could be specified for documents flowing between
various independent partner-roles in an inter-organizational worklfow. Secu-
rity Policies were confined to Confidentiality, Integrity, and Non-repudiation.

www.manaraa.com

6

Security Analysis

This chapter is devoted to the continuous security analysis of service oriented
systems during design and operation. We present the ProSecO framework
which offers concepts and a process model for the elicitation of security ob-
jectives and requirements, evaluation of risks and documentation of security
controls. The goal of ProSecO is to provide the analyst at any time during
design and operation with information about the security state of the system.

Core ideas of ProSecO are the interweaved elicitation and documentation
of functional and security properties based on system models, and the clear
separation of business oriented and technical information. The kind of infor-
mation ProsecO handles is in wide parts informal and non-executable. In this
respect it complements the Sectet-framework which focuses on executable
artifacts.

This chapter is structured as follows: we first give an overview in Section
6.1, then present the Functional System view tailored towards the functional
aspects of service oriented systems in Section 6.2. Section 6.3 presents the
ProSecO security micro-process, whereas Section 6.4 focuses on the specific
aspect of access control. Finally, in Section 6.5 we give an overview of re-
lated work.

6.1 Overview

An important step towards the systematic design of secure applications is
the tight integration of security in the whole development process. In too
many real-world projects security is conceived as a mere technical aspect and
security controls are designed in an ad-hoc way. This causes major drawbacks
for the resulting system.

First, threats originating in the social or organizational context of the
system may not be adequately covered. Examples of such threats are social
engineering attacks where the attacker uses human interaction to compromise
the system.

www.manaraa.com

72 6 Security Analysis

Second, the realized security solutions may not be in line with the require-
ments. Since most security controls have an impact on factors like user flexibil-
ity, system performance and budget a thorough analysis of requirements and
possible security controls is an important step in a systematic design process.

Third, compliance plays a crucial role for many security-critical systems.
For instance, in the e-government and e-health area privacy protection and
authentication are connected with strict legal regulations. Moreover, regula-
tions like Basel II and the Sarbanes Oxley Act have an increasing influence
on applications in e-business. As a consequence the validation of compliance
requirements plays an important role in many service oriented applications.
A prerequisite for such a validation are interconnected requirements and so-
lutions.

For the kind of systems we consider the following assumptions are
characteristic.

• The networks of stakeholders and services are highly dynamic, both con-
cerning stakeholder types, stakeholder instances and the workflows to be
run. For example, a healthcare network may start with the exchange of
health data among hospitals, other stakeholders like general practitioners
and pharmacies may join the network in a later stage.

• The stakeholders are heterogeneous in their organizational structure, se-
curity requirements and security infrastructure, e.g., comparing hospitals
with continuously administrated security infrastructures and general prac-
titioners with ad-hoc systems.

• There may be a high number of stakeholder instances (e.g., millions of
patients, thousands of hospitals) requiring complex infrastructures and
effective engineering techniques.

From these basic assumptions and requirements we derive two goals for
the security analysis of service oriented solutions.

6.1.1 Modularity

Modularity strives for a subdivision into independent layers, views and con-
cepts, so to harness system complexity. This is relevant in three aspects.

• Different levels of abstraction can be analyzed independently of each other
(e.g., separating organizational requirements from technical requirements).

• Different subdomains can be analyzed independently of each other (e.g.,
separating the analysis of the organizational structure of hospitals and
general practitioners).

• The notions of requirements, risks and controls are clearly separated and
may be considered independently of each other.

www.manaraa.com

6.1 Overview 73

6.1.2 Traceability

Traceability traditionally aims at establishing the chronological interrelation
of uniquely identifiable entities in a verifiable way. We differentiate two cases.

• Security aspects can be traced along the levels of abstraction starting with
general security objectives (which may be derived from legal regulations)
and arriving at the implemented security controls. Security controls may
range from organizational rules (e.g., four eyes principle) to technical com-
ponents (encryption, firewalls).

• The analyzer is provided with aggregated information about the state of
the security analysis process at any time.

6.1.3 Model-driven Configuration of Security Services

In this Section we focus on the requirements engineering aspect and present
the security analysis method ProSecO targeted towards the design of security-
critical inter-organizational applications. ProSecO is based on the following
two major principles.

6.1.4 Tight Integration of Functional and Security Aspects

In most process models security requirements are treated in an unstructured
way as non-functional requirements. The key idea of our method is that we put
any security related aspect in the context of the functional system view (e.g.,
specifying which data objects have to be kept confidential or which actions
are non-repudiable). The Functional System View describes the system at dif-
ferent levels of abstraction ranging from business processes to the functional
and technical architecture. The elements of the Functional Model (e.g., busi-
ness processes, information objects, components) drive the security analysis
through their interrelations.

6.1.5 Security as a Process

We conceive security as a process accompaning the whole lifecycle of the
system. The aim of this process is

• to elicitate security requirements
• to detect threats and evaluate risks
• to design and to implement security controls meeting the requirements and

counteracting the risks

Security related activities are condensed in the ProSecO security micro-
process. Each instance of the micro-process is associated with a part of the
functional model and analyzes security aspects of the associated model ele-
ments. In this respect the security analysis may focus on subsystems (e.g.,

www.manaraa.com

74 6 Security Analysis

concerning specific stakeholders) or on specific levels of abstraction (e.g., the
business level).

During systems development instances of the security micro-process are
integrated with the software development process. This means that the de-
velopment of functional artifacts like the software architecture is enhanced
by security related activities with the goal to develop an adequate security
solution.

As soon as the system gets productive the security micro-process is used to
monitor the system as part of the organizations’ security management process.
The goals in this phase are to detect security leaks, react to changed require-
ments (e.g., new legal regulations) or to adapt configurations of the security
architecture.

6.2 Functional System View

For describing the functional aspects of a service oriented system in a modular
way we use two orthogonal concepts for layering – the Level of Interaction and
the Level of Abstraction.

6.2.1 Level of Interaction

The Level of Interaction determines if the focus of modeling is global or local.
The Global View describes aspects related with the interaction of the system’s
stakeholders (i.e. autonomous partners in the network), whereas the Local
View describes aspects related with the behaviour and structure of a specific
stakeholder.

The Global View is in many applications developed by consortia of the
stakeholders involved. Examples of such consortia are confederations in certain
businesses (e.g., chemical industry, paper industry), public initiatives (e.g., in
health care or e-govenment) or other initiatives among business partners (e.g.,
cooperations with suppliers in e-procurement). The goal of such consortia is to
enact ways of seamless cooperation through interaction of IT services. In this
respect core issues of the Global View are to agree on the steps of a common
business process, on the kind of data exchanged and on the services offered.

On the other side the Local View is attached with a specific stakeholder
and focuses on more fine–grained aspects relevant to take part in inter-
organizational processes.

6.2.2 Level of Abstraction

The Level of Abstraction determines the basic concepts used to describe the
system. ProSecO distinguishes three basic levels of abstraction. The business
level focuses on business processes, business objects and the organizational
structure, the application level is concerned with executable components and
services and the physical level describes the technical infrastructure.

www.manaraa.com

6.2 Functional System View 75

Fig. 6.1. Global Functional Meta-model

6.2.3 Functional Meta-models

Functional models in ProSecO are sets of interrelated model elements ac-
cording to the ProSecO Functional Meta Model . The meta-model defines the
concepts to describe certain aspects of a Functional Model (e.g., services, in-
formation objects, roles) and their interrelationships.

Following the categories described above the ProSecO meta-model consists
of two parts – the Global System Meta Model and the Local System Meta
Model . Each of these parts is layered based on the levels of abstraction.

The interdependencies between meta-model elements are both within and
across layers and have the aim to support traceability from the business do-
main down to the technical infrastructure. These interdependencies are essen-
tial for the security analysis in driving the analysis of requirements and risks
along the different levels and views.

In the following we present the meta-model elements of the ProSecO Func-
tional Meta-model in more detail.

Figure 6.1 shows the Global Functional Meta-model, Figure 6.2 the Lo-
cal Functional Meta-model. The main concepts and their interrelations are
explained below.

6.2.4 Global Functional Meta-model

Institution (Business Layer) An institution instance represents an au-
tonomous partner in the service oriented application. In the subsequent
sections we also use the term partner role as a synonym for an institution.
Examples: The institutions Company, Tax Advisor and Municipality

Information (Business Layer) Information is an abstract concept to specify
information types. Information classes may be related in various relation
types such as association, composition or inheritance.
Examples: The information types Annual Statement and Notification

www.manaraa.com

76 6 Security Analysis

Fig. 6.2. Local Functional Meta-model

Global Business Process (Business Layer) A Business Process is a type of
interaction between stakeholders. A Global Business Process models the
interaction of institutions from an external point of view.
Global Business Processes are related with the institutions involved and
the information types processed during the interaction.
Example: The Global Business Process ProcessAnnualStatement describes
the process of processing an annual statement of a company as an inter-
action of the company, the tax advisor (considered as an institution) and
the municipality.

Service (Application Layer) Services are executable components available
in the network. Each service is associated with the information types it
processes (e.g., as input or output).
Examples: The services sendAnnualStatement and sendNotification

The ProSecO Meta-model defines the structure of functional model ele-
ments but does not constrain their representation. This means that Functional
Models may be represented both in textual or graphical ways. The ProSecO
Meta-model is intended to provide a starting point for the security analysis
and not as a complete meta-model for the development of service oriented
applications. For the latter goal the meta-model has to be enhanced by de-

www.manaraa.com

6.2 Functional System View 77

Fig. 6.3. Sample Global Functional Model

tailed structural and behavioural information. In particular, business processes
may be defined based on business process notations such as BPMN [14].

Figure 6.3 shows as an example the Global Functional Model in the tax
advisor case study. Notice the difference between the institution Tax Advisor
and the information type Tax Advisor in the model. The institution models
the tax advisor as a stakeholder taking part in the global business process
whereas the information type Tax Advisor models the static information about
tax advisors available at the business level.

ProSecO does not require complete Functional Models as input for the
security analysis. The identification of interrelationships across layers is part
of the initial steps within the security analysis process and may involve only
a part of the model (e.g., starting from a specific business process or an infor-
mation type).

6.2.5 Local Functional Meta-model

The Local Functional Meta-model describes the concepts used to model the
properties of a specific stakeholder in the inter-organizational system. Accord-
ing to the definitions in the Global Functional System Model these stakehold-
ers in the sequel are called institutions.

Domain Role (Business Layer) A domain role represents an actor in the
fine-grained view of an institution.
Examples: The roles Junior Accountant and Senior Accountant at the Tax
Advisor institution.

Local Business Process (Business Layer) A local business process models
a fine-grained interaction of an institution as part of a global business
process. A local business process is related with the global business process
it is part of, the information types processed and the roles involved.

www.manaraa.com

78 6 Security Analysis

Example: The local business process ProcessNotification is part of the
global process ProcessAnnualStatement and describes the internal steps
of the municipality to issue the notification of an annual statement.

Local Component (Application Layer) A local component represents an
application residing on the institution’s domain. A component may be
related with the service it implements, may be part of other components
or may depend on other components and processes information objects.
Moreover, local components are linked with the local business processes
they support and the information types they process.
Example: The local component MunicipalityInformationSystem support-
ing the persons in charge at the Municipality.

Node (Physical Layer) A node represents technical or physical objects that
are either used to store information objects (e.g., file server, USB stick,
plain paper), to run applications or to transmit information. The concept
of a node may be hierarchically composed and nodes may be linked with
other nodes. Moreover, nodes can be linked with the components they
run.
Example: The node MunicipalityApplicationServer

Location (Physical Layer) A location instance describes a physical location
(e.g., a server room, an office) and is associated with the residing nodes.

Figure 6.4 shows a sample schematic Local Functional Model in the tax
advisor case study. The model contains the local process ProcessNotification
and the information types from the Global System Model. The relevant ap-
plications are the local MunicipalityInformationSystem and the Mail System
for direct communication with the tax advisor and the company. Lastly the
infrastructure is modeled consisting of the workstations and servers. A firewall
acts as a boundary between the internal network and the Internet.

Fig. 6.4. Sample Local Functional Model

www.manaraa.com

6.3 Security Analysis Process 79

In the model of Figure 6.4 the business processes are not yet connected with
applications and technical objects at the physical layer, as these dependencies
are elaborated during the security analysis process.

6.3 Security Analysis Process

Core of the security analysis process are the classical actions of security analy-
sis (as, e.g., described in the ISO 27001:2005 standard). These actions comprise

• elicitation of security requirements
• identification of threats
• evaluation of risks and
• security control engineering.

We extend this core process in two directions. First, all core actions are per-
formed in the context of some model element and the security related informa-
tion (requirements, threats, controls) is attached with these model elements.
To this purpose we introduce a meta-model for the security related concepts,
the ProSecO Security Meta-model . Each of the concepts in this meta-model is
provided with a state indicating the state of analysis. For instance, a security
requirement may be pending or evaluated.

Second, we conceive the core process as a micro–process that is coninu-
ously executed on a defined part of the Functional Model. In order to support
modular analysis the Functional Model is divided into sub–models with a re-
sponsible for each sub–model. For instance, there may be a responsible for the
Global Functional Model and responsibles for each Local Functional Model.
In this view we obtain a set of security processes concurrently executed by
the sub–model responsibles on their sub–models.

In the rest of this chapter we first present the basic security concepts
as a core of the analysis process. Then we give an overview of the ProSecO
micro–process followed by a presentation of its subsequent steps.

6.3.1 Security Concepts

The goal of the Security Analysis Process is to attach the model elements of
the Functional Model in a systematic way with security related information.
Below we present the core security concepts and their interrelationships.

The ProSecO Security Meta-model is shown in Figure 6.5. In this meta-
model the class ModelElement represents any model element of the Functional
Meta-models. More precisely, ModelElement is considered to be a supertype
of all classes in the Functional Meta-models.

Security Objective A Security Objective describes a general security goal
to the system. Security Objectives in many cases originate in legal

www.manaraa.com

80 6 Security Analysis

Fig. 6.5. Security Meta-model

requirements and general availability, integrity and confidentiality require-
ments. For the purpose of the Security Analysis, Security Objectives are
associated with model elements of the business layer (business processes
or information types).

Security Requirement A Security Requirement is a detailed context-de-
pendent explication of a Security Objective. It breaks a Security Objective
down in several more detailed descriptions. The context of a Security
Requirement is derived from the model element for which it is defined.
Security Requirements are linked to Security Objectives to depict their
paths of inheritance.

Threat A Threat is the description of an adverse event that is considered as
potentially having a negative impact. A Threat by itself is not interesting
for our analysis, it only becomes relevant, if we further identify a targeted
model element and a related security requirement. Once the threat has
been assessed and estimated regarding its impact, it becomes a risk.

Risk A Risk is therefore defined as a triplet consisting of a targeted model
element, a related security requirement and a threat that potentially un-
dermines the requirement, including an assessment of its severity. More-
over, every risk is evaluated in the context of the currently implemented
security controls.

Security Control A Security Control is any measure or safeguard that has
been put in place to mitigate the identified risks.

During security analysis the system is described by a set of interrelated
model elements, where these model elements either adhere to the Functional
Model Types of Figure 6.1 and Figure 6.2 or to the Security Meta-model of
Figure 6.5. We call each such set of interrelated model elements a Security
Model.

www.manaraa.com

6.3 Security Analysis Process 81

6.3.2 The Security Micro-process

The task of the Security Analysis Process is to support the security analyst
in developing, evolving and analyzing Security Models. At each point of time
the Security Model should represent the current state of the analysis process,
e.g. recording analyzed requirements, pending risks or implemented controls.

To facilitate the security analysis we divide the Functional Model in sub–
models (domains) that will be analyzed by stakeholders which have the best
knowledge and the responsibility of the domain. Good candidates for domains
are the Global Functional Model and Local Functional Models attached to
specific institutions, for large institutions it may be advisable to additionally
separate abstraction levels or business processes.

Each domain responsible continuously executes the security micro-process
on his domain which leads in the global view to a concurrent execution of secu-
rity micro-processes. Since each security micro-process may modify the state
of related security information (e.g. adding new requirements and threats)
and the model elements of different domains may be interrelated the micro-
processes are not independent but interact with each other.

As an example, if the responsible for the global business process Proces-
sAnnualStatement introduces the requirement ”Company related information
has to be kept confidential” then a trigger is set to the responsibles of the
institutions (Company, Tax Advisor, Municipality) and the institution re-
sponsibles have to check if the requirements are fulfilled at the application
and technical layer.

Figure 6.6 depicts in a schematic way domains, responsibles and the inter-
play of security micro–processes.

The actions of the security micro–process are shown in Figure 6.7. Within
the processes the Security Model is elaborated, i.e. new model elements are
added and security related information is created and modified. Each process

Fig. 6.6. The Overall Picture of Security Micro-processes

www.manaraa.com

82 6 Security Analysis

Fig. 6.7. The ProSecO Analysis Process

is repeatedly executed, where each iteration is initiated by a set of triggers.
These triggers are mainly time events (e.g. the security process is executed
periodically) or a state change in the Security Model. Relevant state changes
may be the creation of new model elements (e.g. new business processes or
services), the identification of new requirements or threats and the implemen-
tation of security controls.

In the sequel we will describe each of the actions of the security micro–
process in more detail.

6.3.3 Elaborate Functional Model

The first step in each micro-process is the creation – or in the case of a
reiteration cycle the adaptation — of the domain.

For instance, new services may be added and linked with other model
elements or the technical infrastructure is changed. In this step it is not yet
necessary to complete the links to other model elements.

6.3.4 Define Security Objectives

With the creation of the Functional Model we have identified important assets
at the business level, the application level and the technical level. The next
step in the security management process is the definition of high level, abstract
security objectives to direct the required detailed modeling efforts to the right
areas. A security objective can be based on legal requirements or on business
considerations. Security objectives are useful for establishing a clear goal that
is understandable at all levels. Typically such a Security Objective is attached
to a model element of the business level (e.g. a business process, a business
information). But depending on the context of analysis it is also suitable to
attach an abstract security objective to a low level technical object.

The security objective’s purpose is not only the communication of the
goal of a security management effort, but it also serves as a guidance on the
formulation of concrete security requirements. It is possible to define many
security objectives per domain. New security objectives are associated with
the state pending.

www.manaraa.com

6.3 Security Analysis Process 83

Fig. 6.8. Sample Security Objective

As an example (cf. Figure 6.8) we attach the security objective ”Compli-
ance with the E-Government Act” to the global business process ProcessAn-
nualStatement.

6.3.5 Identify Dependencies

With the definition of security objectives we have defined the areas of interest
in the Functional Model. Each of the model elements that has a security
objective attached is the root element of a separate scope called a dependency
graph. The dependency graph is a non-cyclic graph of model elements. The
dependencies are identified following a top-down-approach along the levels of
abstraction of the Functional Meta-model. In the case of a global business
process we

• identify associated local business processes
• identify the institutions and roles involved in the processes
• analyse processed information and
• the services supporting the processes
• relate the services with the implementing components
• relate these components with the hosting physical nodes and their location

Figure 6.9 shows a sample dependency graph starting with the global busi-
ness process ProcessAnnualStatement leading to the local business process
ProcessNotification, the Annual Statement information type, the institutions
involved, the supporting services sendAnnualStatement and sendNotification
together with the implementing components and nodes at the Municipality’s
domain.

6.3.6 Security Requirements Engineering

During security requirements engineering a general security objective attached
with some model element is broken down into concrete requirements based on
the model element’s dependency tree. Security requirements engineering is
done in a top-down way where the security requirements of lower level model
elements inherit the security requirements of upper level model elements.

In our case study (cf. Figure 6.10) the security objective ”Compliance
with E-Government Act” attached to the process ProcessAnnualStatement
is broken down to three more detailed security requirements (SR1, SR2,
SR3) referring to confidentiality, integrity and non-repudiation. The depen-
dent model elements (information types, services) and their children inherit
these requirements.

www.manaraa.com

84 6 Security Analysis

Fig. 6.9. Sample Dependency Graph

Fig. 6.10. Sample Security Requirements

The inherited requirement SR1 ”Confidentiality of company data” is refined
in the context of the information types to access constraints (SR4) which will
be discussed in more detail in Chapter 6.4. Moreover, SR1 is refined in the con-
text of the service sendAnnualStatement into the requirements ”Confidential
Transmission of Annual Statement” (SR6), ”Authentication of calling person”
(SR7) and an access control requirement to the service sendAnnualStatement.
This access control requirement (SR5) states that only the institution Tax

www.manaraa.com

6.3 Security Analysis Process 85

Advisor can access this service given that it is registered at the municipal
area of the hosting Municipality.

At the application and technical level SR1 is refined into the requirement
”Authentication of User” (SR8). At physical level SR6 is refined into the re-
quirement of a secure channel (SR9).

As a result of the elicitation of security requirements we obtain a non-
cyclic graph of security requirements, where each requirement is attached
with some model element and the parent-child relationships are induced by
the dependency relations between the attached model elements. Note that
security requirements at the same level are connected by a logical “and”which
means that a parent security requirement enforces the fulfilment of all children
security requirements.

At the stage of definition the state of a security requirement is set to
pending. The state of the corresponding security objective is set to elaborated.
If all security requirements related with a security objective are set to evaluated
also the state of the security objective is set to evaluated. If the state of
all security objectives is set to evaluated we call the whole Security Model
evaluated.

6.3.7 Threat and Risk Analysis

While the security requirements state what properties have to be guaranteed,
threats and risks state what kind of attacks may occur and what damage may
be the consequence. Similarly to security requirements we associate each risk
with some model element.

For a systematic threat analysis at the application or technical level threat
catalogues such as the Baseline Protection Manual [61] or EBIOS [175] can
be used. In this respect the drivers of threat analysis are the model elements
at lower level of abstraction exposed to attacks from outside or inside the
network.

In the second step threats are elaborated to risks. Each risk evaluates a
threat in the context of a model element, an attached security requirement and
relevant security controls. This means that we only consider threats related
to security requirements. Moreover, the evaluation is based on the current set
of related security controls.

For the evaluation itself we use a qualitative approach estimating the prob-
ability and the impact of the damage. For an approach which uses key figures
for evaluating risks we refer to [163].

In the case study (cf. Figure 6.11) we consider two sample threats: TH1,
”The channel between the Tax Advisor Server and the Municipality Appli-
cation Server is compromised”, is evaluated to be of low probability in the”
context of the implemented security control of an SSL connection and of high
impact. TH2, ”The access to the service sendAnnualStatement is not properly
configured” (e.g., accessible by tax adivsor institutions not active any more),
is evaluated to be of high probability and medium impact.

www.manaraa.com

86 6 Security Analysis

Fig. 6.11. Sample Threat and Risk Analysis

Concerning the state model a risk is first pending then evaluated. Security
requirements qualify if the related list of risks is handled to be complete. As
soon as all risks related with a security requirement are evaluated the state of
the requirement is set to evaluated. Upward propagation of state information in
the dependency graph takes place when all subordinate security requirements
are set to evaluated. Moreover, a security requirement which has been re–set
to pending or complete also causes an upward propagation.

6.3.8 Security Control Engineering

In the final step of the micro-process the security controls are chosen and
documented in the security information network. Generally, security control
engineering is a complex task ranging from the choice of appropriate coun-
termeasures (including alternatives), their correctness check, analysis of cost-
effectiveness compared to the reduction of risks, analysis of remaining threats
and the whole procurement- and roll-out-process.

At this place we only consider the small part of documenting implemented
security controls. Each security control is related to the set of risks it reduces.
Consequently, the risks have to be re–evaluated which means that the states
of the related risks are re–set to pending and this state change is propagated
up in the dependency graph as described above.

6.4 Access Control

The specification of access control requirements deserves special attention due
to several reasons. First, access control in general is more complex and fine-
grained than other security requirements. Second, access control can be based
on a variety of concepts like role-based access control [87, 171], discretionary
or mandatory access control.

In the context of the ProSecO Functional Model access control require-
ments can be attached to model elements of any abstraction layer, ranging
from the business layer (access to information types) and the application layer

www.manaraa.com

6.4 Access Control 87

(access to components) to the physical layer (access to nodes and locations).
Though we do not impose restrictions on the type of access control we sup-
port a seamless process of dynamic role-based access control [58]. This process
includes informal access right descriptions as presented in this chapter, for-
mal access permission predicates (Chapter 11) and their translation into exe-
cutable artifacts.

The basic idea of dynamic access control is to specify state and data de-
pendent conditions under which a role has the right to execute an operation
on some resource.

Role In the context of the ProSecO Functional Model a Role in the sense
of role-based access control may either be an institution or a (human)
domain role within an institution. As an example we may specify which
information objects are accessible by the tax advisor as an institution or
by the Senior and Junior Accountant as domain roles within this institu-
tion. A different example is the University as an institution and Professor,
Secretary as domain roles within the institution. Roles may be arranged
in a hierarchy specifying super- and subroles.

Permission A Permission is the condition under which a given role has the
right to call the operation of some resource.

In the Functional Model we may attach permissions to

• information types specifying the conditions under which a role has the
right to create, read, write or delete information objects

• services specifying the conditions under which a role has the right to call
a service

• components specifying the conditions under which a role may call this
component

• nodes specifying the conditions under which a role may access this node
• locations specifying the conditions under which a role may have access to

this location

In our tax advisor case study we have a closer look on the access rules at the
business layer of the Global Functional Model. This means that we specify the
conditions under which an institution has access to a given information type.
Figure 6.12 depicts the structure of information types with the central class
AnnualStatement associated with the Company, the assigned Tax Advisor and
the Notification if available.

An access permission to an information instance may not only depend
on the role and on the kind of access (create, read, write, delete) but also on
conditions on the information instance itself. As an example, a tax advisor has
full access to the data of his client company, a municipality has write access
to not yet issued notifications belonging to annual statements of companies
in the municipal area.

www.manaraa.com

88 6 Security Analysis

The full set of access permissions of the institutions Tax Advisor and Mu-
nicipality with respect to the information types of Figure 6.12 is given in
Table 6.1.

In the next step these informal access permissions are modeled by predi-
cates in the context of services. These predicates are transformed in the subse-
quent step into executable artifacts based on the XACML standard. For more
information we refer to Chapter 11.

Fig. 6.12. Structure of Information Types in the Tax Advisor Case Study

Table 6.1. Access Permissions in the Tax Advisor Case Study

institution → Tax Advisor Municipality
↓ information
type

Company R/W: client company R/W/C: all companies in the own
C: – municipal area

Tax Advisor R/W: own data R/W/C: all tax advisors registered in
C: – the own municipal area

C: –

Annual
Statement

R/W/C: associated with R: all instances in the own

own clients municipal area
W/C: –

Notification R: associated with R: all instances related with
own clients companies in the own

municipal area
W/C: – C: related with company in

the own municipal area and
notification not yet created

W: elated with company in
the own municipal area and
notification not yet issued

www.manaraa.com

6.5 Related Work 89

6.5 Related Work

Related work exists in several directions which we categorized along the fol-
lowing line.

6.5.1 Standards and Baseline Protection

In the area of security management there exist a number of standards and col-
lections of best practices like the ISO 2700x series and the German Baseline
Protection Manual [61] of the BSI (Bundesamt fur Sicherheit in der Infor-ff¨
mationstechnik). The focus of these frameworks is seucurity management in
organizations and enterprises, thus IT related aspects rather refer to land-
scapes of productive IT systems than to the software engineering process.

ISO 27002 is a specification for an information security management sys-
tem employing a Plan-Do-Check-Act (PDCA) model. The Baseline Protec-
tion Manual offers a process for analyzing basic security requirements for the
technical infrastructure in organizations and provides detailed catalogues of
threats and security controls. Both the ISO 2700x standards and the BSI Base-
line Protection Manual do not support security analysis in software projects.
They can be applied to the security analysis of services which are already
deployed and productive and need continuous surveillance and configuration,
however there is no methodological assistance for such an analysis.

6.5.2 Security Management

In addition to the before mentioned standards there is a variety of approaches
from the discipline of security management underlining the importance of
managing information security from a business point of view.

In the area of security requirements engineering the OCTAVE method [27]
uses a three phase approach to identify and manage information security risks.
This comprises the identification of critical assets, threat analysis and security
strategy planning. OCTAVE provides strong support for the overall process
and management aspects whereas our approach focuses on the systematic in-
tegration of modeling artifacts and security analysis. In this respect OCTAVE
could perfectly be used complementarily to our approach.

An approach that is following a model-based risk analysis is CORAS
[164]. CORAS uses UML models mainly for descriptive purposes to foster
communication and interaction during the risk analysis process. A strength
of CORAS are the methodological foundations on which it is built, like Fail-
ure Trees, Event Trees, HazOp and Failure Mode Effect Analysis (FMEA),
that help to identify vulnerabilities and threats. To depict the identified as-
sets, sources of threats and threats CORAS uses adapted diagrams inspired
by UML. Our method uses text-based representation of threats and security
requirements but supports a security analysis process driven by the functional
system properties.

www.manaraa.com

90 6 Security Analysis

Suh and Han [183] use a business model to identify business functions
in order to evaluate the relative importance of information assets for these
functions. The authors focus solely on the security requirement of operational
continuity. Our approach in contrast is not restricted to a single set of require-
ments but allows the definition of all security objectives that are relevant for
the analysed organisation.

6.5.3 Security Analysis in the Software Process

Besides the security management methods there are a couple of approaches
focusing on security analysis in software development.

In [185] a tool based method for threats modeling in software projects
is presented. The authors basically use attack trees and data flow diagrams
to analyze threats and vulnerabilities of systems. In [95] a basic process for
security analysis is defined and the notion of misuse cases is introduced to
describe possible attack scenarios. Misuse cases correspond to our notion of
threats and the concept of providing data bases of general misuse cases is
valuable also in our approach. Both [185] and [95] do not provide a separation
of abstraction layers, in particular do not distinguish business oriented and
technical concepts.

In [166] extensions of a Business Process Notation through security related
concepts is defined. These concepts include confidentiality, non-repudiaton
and integrity and are attached to model elements of business processes (such
as actions or object flow). In this respect the approach is based on security
patterns and resembles the Sectet -framework (cf. Chapter 7), but is not
equipped with a transformation framework. At the level of business processes
the introduced symbols are not expressive enough to describe all kinds of
security requirements.

In [111] a framework for security requirements elicitation and analysis
connected with functional requirements is presented. This framework does
not distinguish different abstraction levels. Finally, the ST–Tool [83] is a se-
curity analysis method targeted towards the design of multi-agent systems.
The starting point of an analysis in the ST–Tool is an interconnected func-
tional model which is step by step extended by security requirements. Similar
to [166] the ST–Tool does not support the explicit specification of security
requirements which is necessary for expressing non-standard security require-
ments. Such non-standard security requirements are typical e.g. in payment
processes and applications in health care and e-government.

6.5.4 Formal Approaches to Security Requirements Specification

A set of further approaches deals with the specification of security require-
ments in the context of formal methods. The motivation is to provide frame-
works for the (tool-supported) correctness proof of security solutions. UMLsec

www.manaraa.com

6.5 Related Work 91

[125] and SecureUML [133, 44] define extensions of the UML. Other ap-
proaches are PCL [74] and the SH Verification Tool [13] for security protocol
verification. So far our framework does not provide verification facilities and
rather focuses on pragmatic security analysis and model-driven software de-
velopment. In future steps the integration of a formal foundation is planned.

www.manaraa.com

7

Modeling Security Critical SOA Applications

In this chapter, we build the first part of our Domain Architecture, the Do-
main Specific Language (DSL). We show how to define a language to model
security-critical inter-organizational workflows. The language is implemented
as a profile for a popular UML modeling tool and supports the modeling of
Basic Security Policies. Every one enforces one of the three basic Security
Objetives Confidentiality , Integrity , and Non-repudiation. The language will
be extended to support Advanced Security Policies in Chapter 11.

This chapter is structured as follows. We begin with an informal description
of the Problem Domain in Section 7.1. We identify relevant Model Views and
draft an informal specification of the features for the DSL. In Section 7.2, we
first develop the modeling language for the specification of decentralized inter-
organizational workflows – called Global Workflows. The language is based on
meta-models, which define the structure of the language – its syntax and
semantics. Security Policies are considered an integral part of the Domain
Architecture (“first class citizens”). Beginning with the modeling language, we
show how to extend the Domain Architecture to cope with security concerns.
In Section 7.3 Security Policies are integrated into the DSL in a platform-
and technology-independent context.

We exemplarily show how to model the use case “Municipal Tax Collec-
tion”, introduced in Chapter 5 and associated Security Policies as we go along.

7.1 The Sectet Domain Specific Language

7.1.1 Domain Definition

The Sectet-framework caters to the needs of a specific Domain. In our case, it
is defined as the area of security-critical, inter-organizational and distributed
workflow scenarios. A distributed workflow scenario can be thought of as
a network of peers interacting by exchanging documents and/or accessing

www.manaraa.com

94 7 Modeling Security Critical SOA Applications

Fig. 7.1. Generic Peer-to-Peer Architecture

resources, which are managed, used and accessed in a completely decentralized
way (Figure 7.1).

In the domain of Sectet, Global and Local Workflows represent two cen-
tral concepts of the DSL.

7.1.2 Global Worklfow

We define a Global Workflow (GWf) as a network of partners cooperating
in a controlled way by calling services and exchanging documents. The GWf
is a workflow with no central instance of control. This means that there is
no central Workflow Management System (WfMS) or document repository.
One can think of it as a virtual process that emerges through peer-to-peer
interaction of executable local processes, which, traditionally, are located in
different domains. This guarantees a considerable degree of loose coupling and
design autonomy at the local level without compromising interoperability.

Figure 7.2 exemplarily shows the UML- model instance of a GWf, which
was presented in-depth in Chapter 5. Syntax and semantics of the GWf will
be introduced in Section 7.2.1.

7.1.3 Local Worklfow

In contrast to the GWf, a Local Workflow (LWf) is executed on a WfMS.
This kind of process accesses back-end functionality by calling local services

www.manaraa.com

7.1 The Sectet Domain Specific Language 95

Fig. 7.2. Exemplary UML - Model Instance of a Global Workflow

and orchestrates these services according to some workflow logic. Through
their collaboration as sub-systems of the GWf, LWfs – each one running on a
WfMS of its own – realize the behavior as specified in the GWf. This kind of
decentralized application is especially suited to scenarios where central man-
agement is not desirable, may it be for social, political or competitive reasons
(e.g., public procurement, e-government).

Figure 7.3 shows the UML-model instance for a local workflow from the
point of view of the service node TaxAdvisor. According to the model, the
node specifies two interfaces to partners in the GWf (TaxAdivsor_Service
_Requester and Municipality_Service_Provider), with services for receiv-
ing, forwarding and returning documents and one to the internal backend sys-
tem (TaxAdisorInternalWebService1). It calls local services to process the
document (e.g., processASDocument).

When realizing a GWf we assume that partners already have implemented
the business functionality they agreed to contribute to the GWf. Seen that
way the LWf simply represents a black box with interfaces specified. In later
chapters, we nevertheless will consider the generation of code-stubs for inter-
faces to the LWfs from the GWf-model (cf. Chapter 9).

Syntax and semantics of the LWf will be covered in depth in Section 7.2.1.

www.manaraa.com

96 7 Modeling Security Critical SOA Applications

Fig. 7.3. Exemplary UML - Model Instance of a Local Workflow

7.1.4 Sectet Model Views

As explained in the preceding section, we base the definition of the DSL on
two central concepts; the Global and the Local Workflow. We take these two
concepts as a starting point for the identification of relevant views onto our
modeled system. On one hand we have two concepts that complement each
other to realize an inter-organizational workflow in peer-to-peer style. On
the other hand we need to figure out how they are related to each other.
Dependencies are captured in a cross-cutting (so-called “orthogonal”) view
onto the system.

Our DSL covers two orthogonal Model Views, necessary to cover all as-
pects needed for the design of inter-organizational peer-to-peer workflows (cf.
Figure 7.4). Both views consist of sub-models, which either capture different
aspects of the Problem Space, like the models of the Interface View, or, as do
the models of the Workflow View, describe the domain at different levels of
abstraction.

The application of orthogonal perspectives allows us to combine the de-
sign of the components that provide the services that may be part of various
global workflows, each one realizing a particular usage scenario. In our sce-
nario, the assumption id that partners have already implemented their local
application logic and made it available as Web services. As the integration
of widespread standards fosters interoperability, models can systematically
be mapped to a choreography standard like the Web Services Choreography
Description language (WS-CDL) (as shown in e.g., [141]). The actors of an

www.manaraa.com

7.1 The Sectet Domain Specific Language 97

Fig. 7.4. Sectet Model Views and Related Sub-models

inter-organizational process can take the formal WS-CDL choreography defin-
ition to check the compliance of their internal processes to the requirements of
the choreography, to generate public interfaces or to control correct proceeding
during run-time.

The Workflow View

The Workflow View is further divided into the Global Workflow Model
(GWfM), which captures the interactions between cooperating partners in
the Global Workflow by specifying the message they exchange, and the Local
Workflow Model (LWfM) that describes an executable process, which is local
to each partner and implements application logic.

The Interface View

The Interface View links the GWfM to the LWfM. It describes the interface
of every partner independently of its usage scenario and represents a contrac-
tual agreement between the parties to provide a set of services based on the
minimum set of technical (operation signatures, invocation style (e.g., syn-
chronous), formats etc.) and domain level constraints, thereby guaranteeing
a considerable level of local design autonomy. According to the interaction
paradigm of Web services, service invocation is modeled as a bilateral inter-
action with a service calling and a service providing partner. This is modeled
through an Object Flow between two roles.

The Interface View consists of three core sub-models:

• The Role Model – modeled as a UML class diagram – specifies the roles ac-
cessing the services in the global application scenario and the relationship
between them.

www.manaraa.com

98 7 Modeling Security Critical SOA Applications

• The Interface Model describes a collection of abstract operations. They
represent services the component offers to its clients, accessible over some
network. The parameters are either of basic type or correspond to classes
in the Document Model. Pre- and post-conditions in OCL-style [153] may
set constraints on service behaviour.

• The Document Model specifies the application-level information and the
structure of the documents that are exchanged by the partners in the
workflow or the application scenario. We model it as a UML class dia-
gram representing the data type view of those partners participating in
the interaction.

The GWfM and the three models of the Interface View carry all informa-
tion that is needed by the Services and Security Components of the Reference
Architecture (cf. Chapter 8) to implement a secure, distributed workflow.

7.1.5 Security Policies

According to the definition of our Problem Domain, we relate Security Objec-
tives primarily to the Global Workflow.

Security Objectives are realized through Security Policies. The latter are
modeled at the design level and associated to models elements of either the
Workflow- or the Interface View (Figure 7.5). Security Policies are translated
into executable artifacts for the Reference Architecture. We differentiate be-
tween Basic Security Policies and Advanced Security Policies.

Fig. 7.5. Security Extensions to Model Views

www.manaraa.com

7.1 The Sectet Domain Specific Language 99

Basic Security Policies

Basic Security Policies realize exactly one Security Objective in a straight-
forward way. In the context of our running example, these policies should
support the specification of a secure document exchange satisfying “end-to-
end security” in a peer-to-peer process. This means that the requirements are
to be satisfied even in case of being routed via intermediaries maybe even
to originally unkown recipients – as opposed to point-to-point style security,
where the sending and the receiving end communicate directly over a secure
channel (e.g., SSL).

Confidentiality Policy. Documents or parts can be qualified as confi-
dential, confining read rights to specific subjects or groups of subjects with
specific attributes (e.g., Roles). This is usually implemented with the help of
public key encryption. The cryptographic operations are directly applied to
the XML-documents (XML-tags and elements), as specified in [119, 43] and
then embedded into the SOAP message structure as defined in [37]. Thus, only
the intended recipient, who is in possession of the corresponding private key,
or in possession of the corresponding “Role Certificate” can read confidential
information.

Integrity Policy. The receiver of a message can verify the Integrity of
documents or parts of them, thereby making sure that an unauthorized third
party did not modify information. Integrity is usually implemented with the
help of public key encryption, requiring the sender to “sign”a hash of the mes-
sage with his private key. The cryptographic operations are directly applied
to the XML documents (XML-tags and elements), as specified in [43]. The
result is embedded in a SOAP message structure, as specified in [119]. The
Qualified Signature is an e-government specific Security Policy that extends
the basic concept of the system signature, which is used to guarantee integrity,
to a legal entity (e.g., a citizen, a chartered accountant, a senior clerk etc.).
We will cover that advanced policy in Chapter 11.

Non-repudiation Policy. Non-repudiation protocols aim at preventing
parties in a communication from falsely denying having taken part in that
communication (as detailed in e.g., [134, 17, 122, 18]).

The challenging part of non-repudiation protocols is to prevent one of
the implied entities to cheat (e.g., [128]). A fair protocol for non-repudiation
guarantees that a sender of a message has no advantage over the receiver,
or vice versa (e.g., [213]). Although we acknowledge the importance of the
fairness property, we only consider the implementation of a näıve protocol¨
with no special care for the fairness property at this place (like in e.g., [134,
17, 122, 18]). This assumption is justified, because the implementation of
an advanced, fair non-repudiation protocol – like the gradual change (e.g.,
[187, 186]) or some probabilistic protocol (e.g., [48, 138]) – is exclusively a
matter of implementation at the component level, leaving the modeling level
untouched (for a detailed description on various protocol implementations for
non-repudiation please refer to [201]).

www.manaraa.com

100 7 Modeling Security Critical SOA Applications

In our context, this means that - based on the Objective of Non-repudiation
- Securiy Policies come in two flavors. Non-repudiation of Reception requires
the receiver to return a signed message carrying a time-stamp to the sender,
optionally keeping a copy in his system log. Non-repudiation of Sending re-
quires the receiver to keep a copy of the message. The message was previously
complemented by a timestamp and signed by the sender. Messaging that has
to comply to such a policy triggers signalling at the protocol layer through the
exchange of signed messages with timestamps. This means that the security
component takes care of producing and consuming the messages and initiating
logging activities.

Advanced Security Policies

Many scenarios have to integrate advanced security concerns that satisfy com-
plex legal or business-driven requirements. Advanced Security Policies cover
various contextual aspects along three dimensions: system attributes (e.g,
available resources, time, location), user attributes (e.g., prime member sta-
tus), ressource attributes (e.g., consumable resource). These policies realize
one or more Security Objectives. We differentiate between the following three
categories of Advanced Security Policies. Each one is specialized into a set of
one or more concrete Security Policies.

Access Control Policies specify a specific set of rules for accessing resources.
Examples are Dynamic Access Control Policies, Delegation Policies, Break-
Glass Policies, and the 4-Eyes-Principle.

Usage Control Policies complement Access Policies in that they specify
a set of rules for the usage of resources onc access is granted. Examples are
Privacy Policies, and Usage Policies.

Finally we have Domain Policies, policies that do not fall into either cat-
egory. An example is the Qualified Signature.

We will cover these policies in extenso in Chapter 11.

7.2 The DSL Meta-models

In this section we define the Sectet Domain Specific Language (DSL). The
DSL is structured into views. Every view has its own sub-models, whose syn-
tax is defined through meta-models. We start with the meta-models of the
workflow view in Section 7.2.1. They define the syntax for modeling inter-
organizational workflows as a composition of Local and Global Worklfows.
The sub-models of the Interface View are introduced in Section 7.2.2. We ex-
tend the basic meta-models to integrate Security Requirements into the DSL
in Section 7.3.

In every section, we present the abstract syntax (represented as meta-
models), the concrete syntax (expressed as a UML-profile), give examples
in order to describe the semantics in context, and, where necessary, analyze

www.manaraa.com

7.2 The DSL Meta-models 101

important relations between the sub-models of the Interface View and the
Workflow View.

In order to differentiate between terms used in various contexts we in-
troduce the following notational conventions. Key concepts of the DSL are
rendered in italized fonts, keywords describing workflow semantics are in bold-
face Times, UML 2.0 elements are in boldface, italicized Times and meta-
model elements are in Courier.

7.2.1 The Workflow View

The Global Workflow Model

The Global Workflow represents a virtual, inter-organizational workflow with
no central instance of control. The GWfM captures information required by
a collaboration protocol standard like WS-CDL [126] or BPSS [71].

This approach offers a standardized but intuitive means to model collabo-
ration protocols graphically. The meta-model is extensible, so that the models
can be enriched with concepts for workflow security as will be shown in sub-
sequent sections.

Defining the Language Structure

A vast body of research literature focuses on how to model various types of
processes and workflows with UML Activity Diagrams (e.g., [124, 77, 46, 82,
20]). They essentially show that UML 2.0 Activity Diagrams with their Petri
nets-style semantics are suited to the task (e.g.,[19, 22]). Our approach takes
a subset of the meta-model of UML 2.0 Activity Diagrams (as specified in
[195]) to model Global Workflows. We put some special constraints on the
semantics as to fit our modeling requirements.

Figure 7.6 presents the meta-model that defines the abstract syntax of our
language for modeling the GWf. In the following, we briefly describe the meta-
classes according to their intended meaning for UML 2.0 activity diagrams and
adapt the semantics to the context of inter-organizational workflows. We only
describe those concepts relevant to our context. A comprehensive specification
can be found in [195, 193].

• An Activity Node is an abstract class for elements in the flow of an
activity connected by edges. Invocation Nodes, Control Nodes, and
Object Nodes inherit from this class. Being an abstract class it has no
particular meaning in our context. An Action is of type Activity Node
and is the fundamental unit of behavior specification. It takes a set of
inputs and converts them into a set of outputs. According to UML 2.0,
the execution of an Action represents some transformation or processing
in the modeled system. In our case, an Action corresponds to a step in
the execution of a workflow.

www.manaraa.com

102 7 Modeling Security Critical SOA Applications

Fig. 7.6. Abstract Syntax for the Global Workflow

• An Object Node is of type Activity Node and acts as a logical container
for an instance of a particular classifier. It is an element of a message flow
definition. In our case, it is some kind of document flowing as a message
between two interacting partners. Activities group Actions and provide
control and data sequencing constraints among Actions as well as nested
structuring mechanisms for control and scope. Each Action in an Activity
may execute zero, one, or more times. Activities correspond to the Global
Workflow.

• An Activity Partition is an activity group that identifies basic actions
that have some characteristic in common. In our case, they represent the
domain of an Actor taking part in a Global Workflow.

• An ActivityEdge is an abstract class for the connections along which to-
kens move between activity nodes. Control Flow and Data Flow Edges
inherit from this class. Being an abstract class it has no particular meaning
in our context.

• A Control Flow is of type Activity Edge and represents an edge that
starts either an Invocation Node, or a Control Node after the previous
Activity Node is finished. In the context of a Global Workflow, the Con-
trol Flow models the sequence of workflow steps in the Local Workflow of
a partner. This means that Control Flow -edges are not allowed to cross
Activity Partitions.

• An Object Flow is an Activity Edge that can have objects or data
passing along it and models the flow of values to or from Object Nodes.
In our context the Object Flow exclusively captures the message exchange

www.manaraa.com

7.2 The DSL Meta-models 103

between two or more interacting Actors. This means, that an Object Flow
can only link Activity Nodes from distinct Activity Partitions.

• A Control Node is an Activity Node that coordinates the flows be-
tween Children, Fork Node, Join Node, Decision Node, and Merge
Nodes.

Modeling the Global Workflow

Figure 7.7 summarizes the type of UML elements from the UML 2.0 meta-
model, its corresponding notation (concrete syntax), their meaning in the
context of the Global Workflow Model and the constraints we put on the
classifiers in order to achieve the task.

Figure 7.8 shows the document exchange between three roles, who par-
ticipate in a GWf: a Company, a Tax Advisor, and a Municipality. Later,
we will add Security Policies so that the exchange complies with the Security
Objectives of Confidentiality, Integrity, and Non-repudiation. For the sake of
readability we set elements of the language for modeling the Global Workflow
in plain italics and those UML 2.0 elemens that represent them graphically
in bold italics.

• The Global Workflow Model is modeled as an Activity .
• An actor in a GWf is modeled as a Partner Role and represented as a

Partition in the GWfM.
• Steps in the GWf correspond to either Interaction Activities or to some

kind of Process Logic at the partner node that is relevant to the speci-
fication of the GWf (e.g., further processing of information according to
GWf requirements). The former act as Web services interfaces to the out-
side world or make calls to some partner’s interface. Both are modeled as
Actions.

Fig. 7.7. Modeling Elements for the Definition of a Global Workflow

www.manaraa.com

104 7 Modeling Security Critical SOA Applications

Fig. 7.8. Modeling an Example GWf with Three Roles

• The Control Flow orchestrates the sequence of Actions inside a Par-
tition through Control Flow Edges. In the GWfM, this corresponds
to a view on the public part of a Local Workflow implemented at a part-
ner node. Internal processing steps of the Local Workflow at the partner
nodes remain hidden. Control Flow Edges are not allowed to cross the
Şswimlanes¸̧ Ť of a Partition .

• The Object Flow models an Interaction Activity between two or more
Partner Roles. An Object Flow consists of two Object Flow Edges
linking an Object Node and two or more Actions. In the GWfM, Mes-
sages travel as instances of XML-Documents through an Object Node ,
which acts as their logical container. An Object Flow represents a Doc-
ument flowing from one Partner Role to the next and has always to cross
the swimlanes from the party calling the service to the one offering it.

• In Web-services based environments, communication activities have the
semantics of remote procedure calls, where one partner requests a service
that another one may provide. An Interaction Activity starts on the calling
partner’s side with an action invoking a service and ends with an action
receiving the Message on the provider’s side.

www.manaraa.com

7.2 The DSL Meta-models 105

• In case of a synchronous invocation, the Control Flow on the calling
Partner Role’s side is blocked until he gets an answer from the service
providing Partner Role, the workflow step on the caller’s side is omitted.
The providing role responds with a new Message. The Object Flow re-
turns to the initial send action, which in turn is handed back the Control
Flow .

The Local Workflow Model

We assume that the service component orchestrating business processes is
a workflow management system implementing a Web services based process
language like BPEL 1.1 or BEPL 2.0.1

Defining the Language Structure

Figure 7.9 shows the abstract syntax of a Local Workflow.

Fig. 7.9. Abstract Syntax for Local Workflows

1 At the time of the Sectino project we had to take BEPL4WS, the de-facto
industry standard for Web services orchestration which was primarily still used
by our partners from industry. Note that any other standard may do as well. It is
just a matter of replacing or adjusting the meta-models for the language structure.
Currently the Web Services Business Process Execution Language Version 2.0 [36]
replaced BEPL4WS (aka BPEL 1.1) as the de-facto standard.

www.manaraa.com

106 7 Modeling Security Critical SOA Applications

Modeling the Local Workflow

Figure 7.10 shows an Activity Diagram describing the LWfM of the Partner
Role TaxAdvisor. It shows the Control Flow between Actions which are
stereotyped with either «receive>> (and optionally «reply>>), in case
the workflow provides a Web service interface or «invoke>> in case of a
service call. We show the most relevant concepts through an example in the
next section. For a detailed description of the concept, please refer to the
specification for BPEL 1.1 [34].

• Web services calls and Web services interfaces are modeled as procedure
calls with parameters in entry conditions to Actions, which are logically
grouped to Web services ports by means of Swimlanes.

• Ports either provide interfaces to clients (e.g., TaxAdvisor_Service_Re-
quester offers a service to the Client) or request services from the internal
business logic (e.g., InternalWebService1 is a service port to internal ser-
vices) or from external partners (e.g., Municipality_AS_Provider invokes
a service on the interface of the Municipality).

The LWfM is an input to a workflow management system, which is imple-
mented autonomously by each partner. The models can be exported as XMI-
files and translated into runtime artefacts (e.g., BPEL4WS) for a workflow
engine as described in [137].

Fig. 7.10. Local Workflow for One of the Roles in the GWF – Role TaxAdvisor

www.manaraa.com

7.2 The DSL Meta-models 107

7.2.2 The Interface View

The Interface View describes the partner nodes as components offering a set
of services with given properties and permissions. Its three sub-models – the
Interface Model, the Document Model, and the Role Model – correspond to the
public part of the local application logic in terms of the Local Workflow, which
is accessible to the inter-organizational workflow. The names of the model
elements conform to the uniform technical and syntactical specifications the
partners agreed upon when designing the Global Workflow (e.g., parameter
format, interaction protocol, role names, service interfaces and parameters,
operation semantics etc.).

The Document Model

According to our definition, a Global Workflow is a network of partners co-
operating in a controlled way by calling services and exchanging documents.
Thus, the Document Model is one of the central concepts on which all other
model rely upon, either by referencing its elements directly or through other
models via proxy classes.

Defining the Language Structure

Figure 7.11 shows the meta-model of the Document Model. It consists of three
conceptual layers.

The Data Layer and the Document Layer model business data relevant
to the domain modeler. The Data Layer specifies simple and complex data
types (e.g., client ID), that are the building blocks for the document layer.
This information is produced and consumed by applications at the back
end. The Message Layer adds technical information to the message that is
used by the infrastructure (e.g. routing information, encryption algorithms,
security tokens etc.). Related meta-information is put into a class of type

Fig. 7.11. Abstract Syntax of Document Model

www.manaraa.com

108 7 Modeling Security Critical SOA Applications

MessageMetaInformation. The framework translates the meta-information
according to its configuration to protocol-specific information (e.g., SOAP)
and places it in a conforming message structure (e.g., the security token is
placed in a SOAP Header information). Message Layer information is usually
generated and added during the transformation process and remains hidden
to the business analyst and the domain modeler. Instances of the Document
Model correspond to the Messages traveling between the actors in the Global
Workflow.

As will be described in Section 7.3, Security Policies can be associated to
an ObjectNode acting as the logical container for a Message flowing during
an interaction.

Modeling Documents

Figure 7.12 shows an example of an instance of a Message flowing be-
tween two Partner Roles. The Message is stereotyped accordingly and named
ProcessedAS, the documentType is set to XML, which is also its default-type,
and is composed of the simple and complex data types.

The Role Model

The Role Model specifies roles necessary in a Global Workflow-scenario. A
user can be associated to one or more roles and has to guarantee the im-
plementation of the Interfaces as specified in the GWfM and the Interface
Model.

Fig. 7.12. Example Instance of a Document Model for Document ProcessedAS

www.manaraa.com

7.2 The DSL Meta-models 109

Defining the Language Structure

Figure 7.13 shows the meta-model of the Role Model. A Partner_Role inherits
from the abstract class GWf_Role and represents the actors in a Global Work-
flow -scenario. Usually, the role hierarchy of a Partner_Role’s domain remains
hidden to his partners in the Global Workflow, but there may be cases, where
security requirements require an explicit association to roles of his internal hi-
erarchy (e.g., for the Qualified Signature or the 4-Eyes-Principle, cf. Chapter
11). These roles are represented through the element Domain_RoleRef in the
GWfM.

Modeling Role Hierarchies

Figure 7.14 shows an example role hierarchy for a Global Workflow. The
three actors taking part in the GWf are modeled as classes stereotyped
«Partner_Role>>. The Partner_Role TaxAdvisor additionally is associ-
ated to two Domain_RoleRefs, which have to be mapped to roles in his internal
hierarchy. The role associated to CharteredAccountant will have to be senior
to the one associated to the role JuniorAccountant.

Mapping a Role from the GWfM to the LWfM

Figure 7.15 shows how the element Partner_Role maps to correspond-
ing elements in the GWfM and the LWfM. A Partner_Role maps to an

Fig. 7.13. Abstract Syntax of Role Model

Fig. 7.14. Example Instance of Role Hierarchy for Role TaxAdvisor

www.manaraa.com

110 7 Modeling Security Critical SOA Applications

Fig. 7.15. Mapping of ActivityPartition (GWfM) and Partner (LWfM) to Part-

ner_Roles

ActivityPartition in the GWfM according to the meta-model for Activities
in the UML Superstructure [195] and to a Partner in the LWfM according to
the BPEL syntax.

The Interface Model

The Interface Model links the GWfM to the every Partner_Role’s LWfM. It
specifies Services and Operations that role have to provide or are required to
use.

Defining the Language Structure

Figure 7.16 shows the elements of the Interface Model. An Interface consists
of a Service with one or more Operations taking and/or returning Messages.
All four are represented in the meta-model. The model references the element
Message from the Document Model through the proxy-class MessageRef.

www.manaraa.com

7.2 The DSL Meta-models 111

Fig. 7.16. Abstract Syntax of Interface Model

Dependencies between Sub-models of the Interface View

Analysing Dependencies to the Role and the Document Model

The Interface Model depends on elements of the Role Model and the Document
Model (Figure 7.17).

A Partner_Role implements Services or uses another Partner_Role’s
Services. A Partner_Role provides and/or calls Operations. An Operation
takes a Message as input and returns a Message as a response. Messages are
defined as elements of the Document Model and are thus referenced by the
class MessageRef.

Modeling Interfaces

Figure 7.18 shows an interface specification for an asynchronous interaction
between two Partner_Roles in a GWf. Each Partner_Role implements and/
or uses an Interface by calling and providing Operations. The element
stereotyped «interface>> refers to a process activity in the GWfM. This
case specifies a synchronous interaction. The role Municipality is waiting

www.manaraa.com

112 7 Modeling Security Critical SOA Applications

Example Interface Specification for an Asynchronous Interaction

for a document named processedAS by offering a (Web service-) operation
named sendProcessedAS.

Figure 7.19 specifies the same interaction as an asynchronous process. The
TaxAdvsior as a caller would have to specify a call-back operation to get the
result in the form of a response message TaxAssessment, which is passed as a
return parameter to the operation sendTA. The latter is part of the Interface
sendProcessAnnualStatement which maps to the process activity which had
originally triggered the interaction (cf. p. 103 Figure 7.8).

Mapping an Operation from the GWfM to the LWfM

An element stereotyped «interface>> in the Interface Model maps to an
UML 2.0 Action in the GWfM and an UML 1.4 Activity in the LWfM.2

The Message that is passed along from one Partner_Role to the next and
referenced through the proxy-class MessageRef maps to an ObjectNode in
the GWfM and a Variable in a LWfM modeled in WSBPEL (Figure 7.20).
The Operation maps to the specific service as declared in the WSDL file.

2 There was a pragmatic reason for the use of UML 1.4 for the concrete syntax of
the LWfM: the UML profile for modeling BPEL processes was only defined for
the version 1.4 [137]. It has not been updated yet.

www.manaraa.com

7.2 The DSL Meta-models 113

Fig. 7.19. Example Interface Specification for a Synchronous Interaction

Fig. 7.20. Mapping of Operation Elements from Interface Model to LWfM and
GWfM

www.manaraa.com

114 7 Modeling Security Critical SOA Applications

Usually, partners wrap their local business logic in a Web services inter-
face, thereby making it available to their partners. We differentiate between
the interfaces of services communicating with the outside (called external in-
terfaces), and the interfaces that provide access to local business logic. The
latter are only used by each partner himself in the LWfM in order to perform
internal workflow actions. They remain invisible to the partners.

7.3 Integrating Security into the DSL

In this section, we integrate security concerns as a part of the Domain Specific
Language into the the Domain Architecture. A Basic Security Policies en-
forces exactly one of the three categories of Security Objectives (Figure 7.21).
Advanced Security Policies will be covered in Chapter 11. Subsequently, we
show how the three types of Security Policies are integrated into the DSL.
As already stated, the language structure – its abstract syntax – is based on
meta-models. Security Policies are associated to elements of other models of
the DSL, specifically the Interface- and/or the Workflow View. The way how
to model a policy, the concrete syntax, will be introduced through examples
that exemplify its use in context.

Basic Security Policies - Securing the Document Flow

In this section, we consider three concrete policies specializing the abstract
category Basic SecurityPolicy : Integrity, Confidentiality, and Non-
repudiation (of sending and/or of Reception). These policies qualify the
instance of a Document (or parts of it) flowing in the specific interaction. We
label these policies as concrete because they can be instantiated during policy
modeling and are translated into executable policies configuring the Reference
Architecture.

We decided to introduce them as a category of their own and qualified as
BasicSecurityPolicies for various reasons. Firstly, they are generic enough
to be applicable to a wide array of problem domains beyond the actual chal-
lenge of securing inter-organizational workflows. Secondly they enforce exactly
one of the three Security Objectives whereas AdvancedSecurityPolicies
may refer to more of them and may be loaded with application- or industry
specific semantics. Thirdly, they were extensively subject to scientific research

Categories of Security Objectives

www.manaraa.com

7.3 Integrating Security into the DSL 115

Fig. 7.22. Policies Realizing the Three Types of BasicSecurityRequirement

and industry application alike, and can be mapped to a proven implementation
mechanism in a straightforward way (e.g., cryptographic functions enforcing
a Confidentiality and/or an Integrity policy, protocols and a combination of
cryptographic functions for a Non-repudiation policy).

Every Security Objective is realized by a specific Security Policy
(Figure 7.22). These policies are associated to elements of the GWfM or
the LWfM when the domain expert or a security administrator defines the
policies for a specific scenario. But before moving on we have to make explicit
the relation of these abstract security concepts to other parts of the DSL at
the meta-level.

In general, a Confidentiality-policy is associated with one or more docu-
ment nodes. It carries information about permissions to view the information,
as the security gateway – a single point of entry into and exit from from the
domain – encrypts the document with the corresponding public key of the
recipient. Accordingly, an Integrity-policy demands that the gateway signs
the document at the domain boundaries, whereas a Non-repudiation pol-
icy triggers a protocol to ensure that proof of reception and/or sending are
exchanged. The policy requires the gateways at the Partner_Role’s domain
boundaries to exchange signed message receipts that carry timestamps or log
message copies.

Defining the Language Structure

The abstract class BasicSecurityPolicy (Figure 7.23) inherits from the ab-
stract class SecurityPolicy and is specialized into three concrete policies:

www.manaraa.com

116 7 Modeling Security Critical SOA Applications

Policies of Type BasicSecurityPolicy

• A Confidentiality-policy associates the proxy-element DocumentRef,
referencing the elements of the Document and Data Layer of the Message,
to a ReceiverRef, the intended reader of confidential information.

• An Integrity-policy associates the proxy-element DocumentRef to the
Sender of a message. He is supposed to sign the document with his public
key. Both types, Sender and Receiver inherit from the supertype RoleRef,
a proxy-element referencing a Partner_Role in the Role Model.

• A specialized form of a NonRepudiation-policy – a NonRepudiation OfRe-
ception-policy – associates the Sender and the Receiver with the Doc-
umentRef.

Modeling a Basic Security Policy

Any of the three policies of the category BasicSecurityPolicy is specified
by assigning a stereotyped constraint to an ObjectNode in the GWfM. The
constraint’s value specification consists of attributes assigned to a document
node corresponding to the document parts to be encrypted and signed. Doc-
ument nodes are referenced with the help of “OCL-style” [153] expression for
navigation through an associated Document Model (cf. Chapter 11 for the
exact syntax of Sectet-PL).

Referring to Figure 7.24, the Object Node processedAS is the logical
container for an instance of the Message ProcessedAS. The node is associ-
ated with a constraint box stereotyped «BasicSecurityPolicy», setting the
context to the message instance.

The policy Confidentiality declares that only the Municipality should
be able to read the nodes annualIncome and clientID. Integrity requires

www.manaraa.com

7.3 Integrating Security into the DSL 117

Fig. 7.24. Example Interaction with Basic Security Policies

Fig. 7.25. Production Rules for Category BasicSecurityPolicies

the security gateway at the TaxAdvisor’s domain boundary to provide a sys-
tem signature in order to provide means to identify possible unauthorized
changes to the message content. nr_Reception requires the Municipality’s
security gateway to return a signed receipt with a time-stamp.

Figure 7.25 shows the production rules for security policies of category
BasicSecurityPolicies.

www.manaraa.com

118 7 Modeling Security Critical SOA Applications

F
ig

.
7
.2

6
.

D
ep

en
d
en

ci
es

b
et

w
ee

n
S
ec

u
ri

ty
a
n
d

E
le

m
en

ts
o
f
M

o
d
el

V
ie

w
a
t

th
e

M
et

a
-m

o
d
el

L
ev

el

www.manaraa.com

7.3 Integrating Security into the DSL 119

Model Dependencies

Figure 7.26 shows the main dependencies between the meta-model for the
abstract type BasicSecurityPolicy and the GWfM, the Role Model, and
the Document Model. The ObjectNode in GWfM acts as the logical container
for an instance of the Message travelling between two Partner_Roles. A
Message carries information in the form of DataTypes, that are grouped into
a DocumentType. Both can be referenced through the proxy-class DocumentRef
from the Security Policy meta-model. In this meta-model the class RoleRef
acts as a proxy-class to a Partner_Role.

www.manaraa.com

8

Enforcing Security with the Sectet Reference
Architecture

This chapter introduces the target Reference Architecture (RA) of the
Sectet-Domain Architecture. The RA specifies a component infrastruc-
ture based on Web services technology and specifications. It acts as a runtime
environment for services provided by Partners in a Global Workflow (GWf).
A Partner implements a portion of a GWf as specified for the specific Part-
ner Role he is holding (cf. Chapter 7).

We start with the introduction of the XACML-data-flow model, which is
the architectural blueprint for the RA in Section 8.1. We then specify Ser-
vice and Security Components in Section 8.2. These components extend the
XACML Data-flow Model to a full-blown Reference Architecture as a tar-
get infrastructure for the Sectet-framework. We move on to describe the
working of enforcement mechanisms and services by specifying the messaging
protocols between security components through UML Sequence Diagrams in
Section 8.3. In Section 8.4 we finally show how the components are config-
ured with the help of executable XML-artifacts called Executable Policy Files
based on Web services security standards.

8.1 Architectural Blueprint

Designed for deployment in SOA based scenarios, the implementation of the
Sectet-Reference Architecture is primarily based on Web services standards
and technologies. We will reference respective standards along with the spec-
ification of the components. The implementation specifically relies on the
XACML Standard [147] for the following purposes:

1. the XACML data-flow model represents the core of the architectural blue-
print. The Sectet-RA adds security components to the model.

2. Security Policies for inbound and outbound communication flow are trans-
lated to executable policies based on the XACML syntax.

www.manaraa.com

122 8 Enforcing Security with the SECTET Reference Architecture

3. we use XACML’s standard request/response protocol for communication
between the security components. Specifically, the single point of access
and the component that performs the compliance checks work as specified
in the XACML specification for decision on authorization requests.

4. Sun’s XACML reference implementation [184] was used as the core com-
ponent for our security infrastructure. It is important to acknowledge,
that we use it not only for its intended purpose (according to which the
Policy Decision Point evaluates access requests) but also for the evalua-
tion of requests for security compliance check by the Policy Configuration
Engine.

8.2 Components

In the following we introduce those components of the Reference Architec-
ture, necessary to realize basic scenarios demanding Basic Security Policies
(cf. Chapter 7). Extensions to the Reference Architecture needed for the en-
forcement of Advanced Security Policies will be discussed in Chapter 11.

Figure 8.1 shows the Sectet-Reference Architecture for a partner who
implements his portion of the Global Workflow. He does so by offering an
interface to specific services of his Local Workflow to his partners.

Fig. 8.1. Sectet-Reference Architecture

www.manaraa.com

8.2 Components 123

8.2.1 Service Components

Services

Services represent elemental units of functionality. They may call other ser-
vices (internal and/or external) or may be called by services (2.1, 2.2, and
2.3), forming composite services. Wrapper services (2.2) wrap back-end func-
tionality (e.g., databases, enterprise ressource planning systems etc.) in order
to make it accessible via Web services. Services can also directly be called
by partners from the outside (2.3), thus bypassing the workflow engine, but
intercepted by the security gateway.

Workflow Engine

The core component is the workflow engine (1)(e.g., Oracle BPEL Process
Manager [7] or ActiveBPEL [80]) which implements an orchestration language
such as BPEL4WS [36] or BPML ([35]) and aggregates and controls the se-
quence of existing Web services (2.1) and (2.2) to a composition that may be
offered as a Web service of its own to external business partners.

8.2.2 Security Components

In order to provide a trusted domain, elemental and composite services are
wrapped by Security Components.

External Policy Enforcement Point

The external Policy Enforcement Point (PEP) represents a single point of
entry and acts as a security gateway. It intercepts incoming SOAP messages
and applies basic security processing to the message structure. It extracts
tokens from the inbound SOAP messages, decrypts elements and checks the
validity of signatures. Accordingly, the PEP adds tokens to, encrypts and
signs elements in outbound messages. This basic functionality for processing
the security-structure of messages leverages standards like XML-Encryption
[119], XML-Digital signature [43] and WS-Security [37]. The PEP reference
implementation is based on Apache’s WSS4J – a Java library for signing and
verifying SOAP Messages with WS-Security information [89].

Figure 8.2 shows an example WS-Security compliant SOAP message, that
may be intercepted by the PEP. The SOAP message consist of two parts, a
header-block and a body. The header-block contains security-relevant infor-
mation in the wsse:security section consisting of:

1. The timestamp information (lines 6-9).
2. The X.509 certificate as a security token associated with the message (lines

9-12).

www.manaraa.com

124 8 Enforcing Security with the SECTET Reference Architecture

Fig. 8.2. Exemplary WS-Security Compliant SOAP Message

www.manaraa.com

8.2 Components 125

3. The key that is used to encrypt the body of the message. Since this is
a symmetric key, it is passed in an encrypted form (lines 13-27). The
algorithm used to encrypt the key is specified to RSA (line 14). Lines 15-
19 specify the identifier of the key that was used to encrypt the symmetric
key. Lines 20-23 specify the encrypted form of the symmetric key.

4. The encryption block in the message that uses this symmetric key (lines
24-26). In this case it is only used to encrypt the whole body (Id="enc1").

5. The digital signature based on the X.509 certificate, with the content to
be signed indicated in lines 29-48 being signed. Line 41 references the
message body.

6. The actual signature value (line 49).
7. The key that was used for the signature. In this case, it is the X.509

certificate included in the message (lines 50-54).

The actual business relevant payload is part of the body of the message
(lines 58-66) with encrypted meta-data and consist of:

1. The element value being replaced line 59).
2. The encryption algorithm – Triple-DES in this case (lines 60-61).
3. The cipher text (lines 62-64).

For more information, on syntax and semantics, please refer to related
specifications, e.g., [119, 43, 37].

In case Non-repudiation-of-reception was specified as a security require-
ment, the PEP returns a time-stamped and signed notification of receipt to the
sender. In case of a specified Non-repudiation-of-sending, the PEP forwards a
time-stamped copy of the signed message he received from the sender to the
logging unit. The PEP interacts with other security components before for-
warding an inbound message to the end-recipient (e.g., back-end application).

Authentication and Role Mapping Unit

The PEP first makes an authentication request to the Role Mapping Unit (6),
which assigns a role to the caller. The request/response protocol is based on
XACML 2.0.

Policy Configuration Engine

In a second step, the PEP checks the inbound message for compliance with
security policies by querying the Policy Configuration Engine (PCE) (5). Al-
ternatively, for outbound messages, the PEP queries the Policy Configuration
Engine for security requirements to integrate into the message structure. The
requirements for inbound and outbound messages are specified in a policy
file based on the standards WS-Policy, XACML and WS-Security. The secu-
rity policies, which were specified in the Global Workflow Model, are directly

www.manaraa.com

126 8 Enforcing Security with the SECTET Reference Architecture

translated into policy files for inbound- as well as outbound messaging for the
Policy Configuration Engine.

Policy Decision Point

The PEP finally queries the Policy Decision Point (4) for Authorization. It
checks invocation requests from workflow partners to exposed services and
forwards requests to the Policy Decision Points (4) - which check the requests
according to some policy stored in the Policy Repository (PR) (7). The query
protocol is based on XACML, whereas the policy files are based on WS-Policy,
XACML and WS-Security.

Internal Policy Enforcement Point

The external PEP implements security objectives like user authentication,
confidentiality and integrity regarding data exchange with external partners,
whereas the internal PEP maps and enforces access rights to the local envi-
ronment.

8.2.3 Supporting Security Components

Logging Unit

The Logging Unit (8) provides application level tracing and error logging and
basically supports the realization the security requirements of Non-repudiation
(Non-repudiation-of-reception and Non-repudiation-of-sending).

The Session Engine

The Session Engine (9) implements a security context engine for handling
sessions. It works at the application layer and relies on WS-Trust [33] and
WS-Secure Conversation [32].

Public Key Infrastructure

The PKI Interface (10) is based on WS-Trust and provides access to external
Security Token Services for token issuance, validation or mapping.

8.3 Communication Protocols

This section describes the interplay between the security components PEP,
PDP, PCE, and PR when enforcing Basic Security Policies on inbound
and outbound messages. We first describe how Confidentiality and Integrity
policies are enforced by the Security Components (Section 8.3.1) and then
move on to Non-repudiation-of-sending and Non-repudiation-of-reception
(Section 8.3.2).

www.manaraa.com

8.3 Communication Protocols 127

8.3.1 Enforcing Confidentiality and Integrity

Inbound Messages

Figure 8.3 describes the sequence of messages between the security compo-
nents for incoming messages that have to comply with the security require-
ments of confidentiality or integrity. The PEP acts as a single point of entry
into the secured domain and intercepts every application bound SOAP mes-
sage. In a first step, basic SOAP message processing is performed. The PEP
extracts the SOAP message security-structure and retrieves the keys embed-
ded in the message, decrypts encrypted parts and verifies signatures. It caches
those elements targeted to other recipients in order to reinsert them, when for-
warding or relaying parts of the message. In a second step, the PEP builds a
message Request for Compliance Check with information on those elements
that were encrypted and/or signed and sends it to the Policy Configuration
Engine (PCE). The PCE loads the corresponding policy file from the Policy
Repository, performs a compliance check, and compares the information of
the request with the security requirements specified in the policy file. In case
the message was correctly encrypted and signed it signals a positive result
to the PEP, which in his turn forwards the plain SOAP message to the local
service. Alternatively, the PEP discards the message and optionally returns a
fault message to the sender.

Fig. 8.3. Components Communication Protocol for Inbound Messages (Confiden-
tiality and Integrity)

www.manaraa.com

128 8 Enforcing Security with the SECTET Reference Architecture

Fig. 8.4. Components Communication Protocol for Outbound Messages (Confiden-
tiality and Integrity)

Outbound Messages

Figure 8.4 describes the sequence of messages between security components
for outgoing messages that have to comply with the security policies for Con-
fidentiality and/or Integrity.

The PEP “intercepts” outgoing SOAP messages. He queries the PCE for
the corresponding outbound message policy, which the PCE retrieves in the
form of a Policy Template from the Policy Repository (PR). The PEP then
encrypts and signs the elements as required by the outbound policy schema,
and embeds security information within a security structure into the message
in compliance with the standard WS-Security (Elements targeted to other
recipients that were cached when inbound message processing occurred, are
inserted in case they are available). The secured SOAP Message is finally
forwarded to its destination.

8.3.2 Enforcing Non-repudiation

Non-repudiation-of-sending (Inbound Message)

Inbound messages that have to comply to the requirement of non-repudiation-
of-sending are processed the same way as encrypted and signed messages by
the PEP (Figure 8.5). Additionally, when performing the compliance check,
the PCE sends a logging signal to the PEP and waits for a notification from
the Logging Component before returning a positive compliance notification
to the PEP. The PEP, when receiving the logging signal, adds a timestamp

www.manaraa.com

8.3 Communication Protocols 129

Fig. 8.5. Components Communication Protocol for Inbound Messages (Non-
repudiation-of-sending)

to the message structure produces a hash value over the message and sends it
for logging to the Logging Component.

Non-repudiation-of-reception (Inbound Message)

Non-Repudiation-of-Reception for inbound messages works almost similar as
non-repudiation of sending, but the PEP, when receiving the logging signal
from the PCE, returns a signed proof of reception with timestamp to the
sender (Figure 8.6). It notifies the PCE, which acknowledges full compliance
to specified security requirements with a positive message.

Non-repudiation-of-reception (Outbound Message)

When sending messages, only the case of non-repudiation of reception is rel-
evant (Figure 8.7). After intercepting the plain SOAP Message, the PEP
retrieves the outbound policy schema and applies encryption and signature
as specified and forwards the message to the ultimate recipient. The PEP
waits for a Proof of Reception and logs the acknowledgement, when received
or in case of a specified timeout throws an error and notifies the sending
service.

www.manaraa.com

130 8 Enforcing Security with the SECTET Reference Architecture

Fig. 8.6. Components Communication Protocol for Inbound Messages (Non-
repudiation-of-reception)

Fig. 8.7. Components Communication Protocol for Outbound Messages (Non-
repudiation-of-reception)

8.4 Component Configuration

This section describes the syntax and semantics for Policy Files, specify-
ing inbound message security (Section 8.4.1) and outbound message security
(Section 8.4.2).

www.manaraa.com

8.4 Component Configuration 131

8.4.1 Inbound Messaging - (Executable Security Policy File)

We use an XACML reference implementation [184] for the evaluation of re-
quests for compliance check coming from the PEP to the PCE. The compo-
nent is actually called Policy Decision Point and also implements the logic
for the evaluation of decision requests for access control. Although we rely on
the same technology for the PCE and use the same syntactical elements of
the XACML language the semantics are different. This is why we decided to
call the component Policy Configuration Engine.

In order to be processable by the PCE, Policy Files need to integrate all
XACML elements whose usage is required according to the specification even
those who are irrelevant to the specification of the Inbound Policy File. The
syntax will be marked correspondingly.

The syntax for the specification of executable security policies for inbound
messages in the Policy File basically relies on a subset of the of XACML 2.0
core specification. Although the figures of this section and associated schemas
in the appendix, show all XACML language elements necessary to comply to
the schemas as defined in [147], we only describe those syntactical elements
of the XACML 2.0 core syntax used in an Inbound Policy File. Those ele-
ments, which are relevant to the specification of a Policy File are highlighted
in bold face.

For every element, we will proceed as follows: we will first describe its syn-
tax inclusive of sub-elements in the context of the XACML specification. We
then explain its meaning it the context of a Policy File. For a full specification
of the XACML syntax, please refer to [147].

For the sake of readability we do not include namespaces and standard
XML syntax (e.g., <?xml version="1.0" encoding="UTF-8"?>). The only
exception being schemas, where the prefix xs: stands for the W3C XML
Schema namespace.

Figure 8.8 shows the all relevant elements of a Policy File. Attributes of
XACML syntax elements are shown as class attributes. The main elements
are the PolicySet, the Target, the Policy and the Rule element. They are
described subsequently.

The Rule element

A rule is the most elementary unit of an Executable Policy File. A rule is
evaluated on the basis of its contents. According to [147], the main components
of a rule are:

1. the target element that defines the set of resources, subjects, actions
and environments to which the rule is intended to apply. It is included as
an empty element into the Policy File, because its presence is irrelevant
in the security context. In that case, according to [147]), the target of the
Rule is the same as that of the parent Policy element.

www.manaraa.com

132 8 Enforcing Security with the SECTET Reference Architecture

Fig. 8.8. Abstract Syntax of XACML 2.0

2. the effect attribute of the rule indicates the rule-writer’s intended conse-
quence of a True evaluation for the rule. Two values are allowed: Permit
and Deny.

3. The Condition element is the core of every rule. It represents a boolean
expression that defines the applicability of a rule to an incoming message.
Every security requirement is captured within two nested Apply elements.
The first Apply element additionally contains an AttributeValue element
of data-type String, whose value specifies either a sending role or a receiv-
ing role, depending on the security requirement. The nested Apply element
contains an AttributeSelector element of data-type String specifying
the document node and the security requirement. This is placed in the
element’s RequestContextPath attribute.

Listing 8.9 shows an example rule for two nodes of a document called
ProcessedAS, set through the RuleId attribute [line 1]. The Effect attribute
should be a Permit, once all conditions are met by the inbound document [line
1]. The Target section remains empty [lines 3-7], as this element is specified
by the parent Policy element.

The Condition section [lines 8-27] defines two security requirements to
be met by specific nodes in the document ProcessedAS. Every requirement
for a specific node is defined within two nested Apply elements. The syntac-
tical structure remains the same for every requirement. The Apply element,

www.manaraa.com

8.4 Component Configuration 133

Fig. 8.9. Example Rule for Two Nodes of a Document of Type ProcessedAS

whose FunctionId attribute is set to string-equal contains two elements.
An AttributeValue element indicating the role which is involved and an
AttributeSelector element indicating in it RequestContextPath attribute
the documents and the security requirement that has to be complied with.

The first Apply section [lines 9-17] indicates that the node annualIncome
[line 14] should only be readable to the Municipality [line 10], implying en-
cryption with its public key. The RequestContextPath attribute [lines 13-15]
references the location of security information within the request for compli-
ance check message coming from the PEP. The XPath expression indicates
that the information will be stored as an Attribute value within the Envi-
ronment section [line 13]. The information coming with the request (a node-
requirement pair) will be compared with the information in the policy (line
14). In case of an exact match of the two string expressions the message is
considered to be compliant to the requirement. Please, refer to Section 8.4.3
for the syntax of the Request for Compliance Check.

The second Apply section [lines 18-26] indicates that the node processedAS
[line 19] – actually corresponding to the whole message payload (documents
root node) – should be signed by the role TaxAdvisor [line 23]. This neces-
sitates the application of a system signature with the role’s private key. The
condition’s FunctionId attribute [line 8] is set to and thereby indicates that
both Apply sections have to be met.

www.manaraa.com

134 8 Enforcing Security with the SECTET Reference Architecture

The Policy element

The Policy element combines rules into a policy. A Policy element comprises
four main components:

1. a set of Rule elements defining node-requirements pairs (as described in
the section The Rule Element).

2. an attribute RuleCombiningAlgId, corresponding to a rule-combining
algorithm-identifier. It defines a procedure for reaching a decision given the
individual results of evaluation of a set of rules. In the case of the Permit-
overrides algorithm, if a single result yielding a Permit is returned, then
the combined result is Permit.

3. a target element that specifies the roles taking part in an interaction. The
Subject element’s value defines the service caller, whereas the Resource
element defines the service provider.

4. a PolicyDefault element specifying the X-Path version through the value
of a nested XPathVersion element.

Listing 8.10 shows the structure of policy nesting the rules of Listing 8-1
[line 28]. The PolicyId attribute [line 1] identifies the name of the interaction,
sendProcessedAS corresponding to a specific operation on a service provider’s
Web services port. The attribute RuleCombiningAlgId [line 1] is by default set
to permit-overrides, saying that any call who matches one of the rules will
be seen as compliant to security requirements as specified. The Target element

Fig. 8.10. Example Policy Nesting a Set of Rules

www.manaraa.com

8.4 Component Configuration 135

section [lines 5-27] defines the two interacting roles. The Subject element
[lines 7-13] specifies the role TaxAdvisor as the invoking party, whereas the
Resource element specifies the role Municipality as the providing party.

The PolicySet element

Policies define interactions. Every Interaction is associated to a specific docu-
ment instance. A particular type of a document (as defined in the Document
Model) may be used in several interactions, every time as a specific instance
of the document type.

A PolicySet groups all policies involving a specific document type, speci-
fied within the Resource element of the Target section. All policy sets refer-
ring to documents of a GWf are grouped into an additional PolicySet element
which is associated to the GWf, specified within the Resource element of the
Target section.

Listing 8.11 shows the two nested PolicySet elements. The first Pol-
icySet element refers to the GWF AnnualStatement as stated through its
attribute PolicySetId. The actual specification occurs within the Target sec-

Fig. 8.11. Example of Nested PolicySet Element Targeting the GWf and a Docu-
ment

www.manaraa.com

136 8 Enforcing Security with the SECTET Reference Architecture

tion [lines 4-15], where the Resource element’s value is set to AnnualState-
ment. The second PolicySet element [lines 16-34] groups all policies related
to instances of a ProcessedAS document, as indicated through the PolicySet
element’s attribute [line 16] and the corresponding Resource element’s value
[line 24] in the Target section [lines 16-34].

8.4.2 Outbound Messaging - (Executable Security Policy Files)

Figure 8.12 shows the abstract syntax for the composition of an Executable
Security Policy File for policy enforcement on outbound messaging.

An xsd:element can be of complex type or simple type, specified through
an attribute, as is the name of the element. A Policy File for outbound mes-
saging starts with an element of type ComplexType that contains a sequence of
elements structured according to the document type defined in the Document
Model.

The security policies are specified within an xsd:annotation element.
This container nest an xsd:appinfo element, indicating that the information
is meant for machine processing. The latter nests all elements necessary to
specify the security requirements (sectet:Confidentiality, sectet:Inte-
grity, sectet:NonRepudiationOfSending, sectet:NonRepudiationOfRe-
ception).

Fig. 8.12. Abstract Syntax for a Policy File for Outbound Messaging

www.manaraa.com

8.4 Component Configuration 137

Fig. 8.13. Example Policy File for Document of Type Notification

Figure 8.13 shows an example file for a document of type Notification,
which is sent – as indicated through the TargetNamespace attribute [line 2] –
by the role Municipality by invoking the operation sendNotification. The
policy file applies to the document specified within the xsd:complexType
declaration, which in our case is of type NotificationType. The section
BasicSecurityPolicy [lines 7-26] contains the three sections for the spec-
ification of policies, one for each type. All of them specify that the policy
applies to the whole document – one single ElementName element referencing
the document root element [lines 9, 15, and 21].

The role element defines either the sending or receiving party, depending
on the security policies. Confidentiality requires a reference to the public
key of a receiver role for the encryption. Integrity requires the signature of

www.manaraa.com

138 8 Enforcing Security with the SECTET Reference Architecture

the sending role. NonRepudiationOfReception waits for an acknowledgement
by a receiver role.

The mapping of a role to a particular user, playing the receiving end in the
interaction is done through the Role Mapping Unit of the RA (cf. Figure 8.1
on p. 122), before the PEP applies the processing steps to the SOAP message.
In case there is more then one user holding the specific role, the first match
is taken by default. Other algorithms may be applied as well.

8.4.3 Request for Compliance Check

Figure 8.14 shows the syntax elements of a Request for Compliance Check.
A Request consists of a Subject, who is the service requester, a Resource,
being the service Provider, an Action being the operation called, and the En-
vironment section which will be accessed by the Policy Configuration Engine
(PCE) when evaluating the request against the Policy (Component Nř5 inˇ
Figure 8.1 on p. 122).

The Environment section captures two units of information. It specifies
the policy/node pairs as identified in the inbound message as an AttributeId
attribute of an Attribute element and it specifies the role holding the key
for encryption (sender) or signature (receiver) through an AttributeValue
element, respectively.

Figure 8.15 shows an example Request for Compliance Check which was
constructed by the PEP at the boundaries of the domain of a holder of the
role Municipality and forwarded to the PCE for evaluation. As can easily be
seen the document was sent by the TaxAdvsior (line 4) to the Municipality
(line 9) by invoking the operation sendProcessedAS (line 14). After processing
the security information the PEP added the following information: the element
ClientID was encrypted with the Municipality’s public key (lines 18-20),
and the TaxAdvisor signed the whole document (lines 22-24).

Fig. 8.14. Abstract Syntax for Request for Compliance Check

www.manaraa.com

8.4 Component Configuration 139

Fig. 8.15. Example Request for Compliance Check

Fig. 8.16. Abstract Syntax for PCE Response Message

Fig. 8.17. Example Positive Response

8.4.4 Response Request for Compliance Check

After evaluation, the PCE sends back a response message, whose root element
is a Response containing a Result, which nests the Decision. The answer
could be either a Permit after positive Evaluation, a Deny after negative eval-
uation or in case of default.

Figure 8.16 shows the abstract syntax for a response, and Figure 8.17
shows an example positive response.

www.manaraa.com

140 8 Enforcing Security with the SECTET Reference Architecture

Fig. 8.18. XML-, Web Services and Security Standards in the Reference Architec-
ture

8.4.5 Technology and Standards

Figure 8.18 gives an overview over which security component enforces which
security policy by providing a specific service, implemented through a specific
standard.

www.manaraa.com

9

Model Transformation & Code Generation

In this chapter, we complete the Domain Architecture by presenting the Model
Transformations. Model Transformations link the Domain Specific Language
(DSL) (introduced in Chapter 8) to the Reference Architecture (RA) (specified
in Chapter 7). As the specific implementation of these Transformations is not
necessary when applying the Sectet-framework, we confine ourselves to a
sketch of the conceptual mapping (a rough description of how model elements
map to specific syntactical blocks or patterns of code) and refer the reader
interested in the implementation of these Transformation to a broad array of
literature on resective tools and approaches (e.g., [180, 135, 157])

This Chapter is structured as follows. Section 9.1 gives a general overview
of transformation types in the Sectet-framework. Section 9.2 introduces the
conceptual mapping of meta-model elements defining a GWf and related se-
curity requirements (as identified in Chapter 6 and modeled in Chapter 7) to
syntactical elements for executable artefacts configuring the security compo-
nents of the RA. Section 9.3 introduces the mapping of meta-model elements
of the GWfM to elements of the abstract syntax for service components of
the RA. Having defined the mapping conceptually with the tables, we close
this Chapter with Section 9.4 giving an overview on apporaches on how to
implement Transformations and actually generate the artefacts.

9.1 Transformations in the Sectet-Framework

The platform independent models of the DSL represent the means to configure
the security components and (in parts) the service components of the RA with
the help of XACML-files. The Sectet-framework differentiates between two
types of model transformations.

9.1.1 The Generation of Security Artefacts

The first type of transformation – depicted as box Nr.1 in Figure 9.1 – covers
the transformation of security relevant information captured at the Model
Level (as Platform Independent Models) into configuration files for the RA.

www.manaraa.com

142 9 Model Transformation & Code Generation

Fig. 9.1. Transformations in the Sectet-framework

The configuration files are conceptually defined as Implementation Spe-
cific Models located at the Component Level. A transformation process tak-
ing UML 2.0 models as input and generating code is called Model-to-Code
Transformation. We will follow that apporach to generate security Artefacts
in Section 9.2.

9.1.2 The Generation of Services Artefacts

The second type of transformation - depicted as boxes Nr. 2 and Nr. 3 in Figure
9.1 - refers to the generation of code skeletons for service components at local
partner nodes (e.g., BPEL- worklfow engine). Generated code is confined by
the information available in the GWfM. This corresponds to the interface of
a Local Workflow (LWf) to the “outside”. The “outside” refers to all partner
roles in the Global Workflow.

There are many ways to represent a GWf in a machine readable format
for further processing by transformation functions of the framework. One pos-
sibility would be to describe a GWf as a chorography specified in the XML-
based WS-CDL language and map WS-CDL-elements to their syntactical

www.manaraa.com

9.2 Security Transformations 143

counter-parts in an orchestration language (e.g., BPEL). This can be repeated
for all partners in a peer-to-peer process. The approach is extensively pre-
sented in [141].

In the present work, we took an alternative approach for the modeling
of a GWf. We take the much more intuitive UML 2.0 Activity Diagrams
for the representation of a GWf (cf. Chapter 7). UML 2.0 Actions define
interactions with partners in the GWfM (invoking or providing a service)
and are transformed into platform specific models for further transformation
Model-to-Model Transformation or, alternatively, into code, which corresponds
to Model-to-Code Transformation.

The target for generated services artefacts could either be a worklfow en-
gine with a workflow language like BPEL or plain Web services wrapping
back-end functionality (cf. Chapter 8). In the latter case, the control flow of
the LWf is left over to the wrapped application. In case the target is a worflow
engine, calls to local services would have to be inserted manually, as this kind
of information would not show up in the GWfM.

9.2 Security Transformations

Security Transformations define how model instances capturing a GWf are
translated into artefacts configuring the security components of the RA. The
transformations are specified at the level of the meta-models. This means, that
we define a conceptual mapping from elements of the platform independent
meta-models of the DSL (Chapter 7 pp. 100) to elements of the abstract
syntax of the platform specific target artifact (Chapter 8 pp. 130).

The mapping is defined through rules listed in tables which can be found in
Appendix A. The tables map elements, attributes and functions of the target
artefact on the left hand side to the corresponding source element at the
platform independent level. By default, elements of the source meta-models
refer to the security meta-model (Section 7.3 pp. 114), in case they do not,
they are prefixed by the name of the meta-model in the corresponding model
view (Chapter 7 pp. 100).

Abstract and concrete syntax of Inbound- as well as Outbound Policy Files
fully comply to the XACML 2.0 specification [147]. All XACML elements,
attributes and functions needed by the component are listed in the table.

Section 9.2.1 defines the rules for the generation of the Inbound Policy
File, and section 9.2.2 defines the rules for the generation of the Outbound
Policy File.

9.2.1 Inbound Policy File

Figure A.1 in the Appendix on page 226 contains the rules for the generation
of Inbound Policy Files. These artefacts configure the security components for
inbound messaging.

www.manaraa.com

144 9 Model Transformation & Code Generation

The relationships between elements of the target model are expressed ei-
ther through nesting of sub-elements within parent-element or by associating
attributes to elements. These elements are prefixed with a path expression
defining their location with respect to the root element realizing a particular
concept of the language as defined in Chapter 8 on pp. 8.4.1. There are four
main concepts:

1. Rules capture security policies as defined in the models. They are asso-
ciated to document instances travelling through object nodes in an inter-
action between two partners.

2. Policies group rules into a set. They are associated the document classes,
thus referring to all instances of the respective document.

3. PolicySet elements group policies into sets. We use a PolicySet element
as root element, associating a policy with a specific GWf. The root Pol-
icySet nests one or more additional PolicySet elements, one for every
document class in the Document Model (cf. p. 107 in Section 7.2.2).

4. Target elements are syntactical XACML constructs that set a context in
terms subject, resource and action referring to a Rule, a Policy or a Poli-
cySet. The sub-elements of a Target nested within a Rule are empty. The
reason being that the context is established through the RuleId attribute.
Its presence is mandatory in order to comply with the specification. Nested
within a Policy element the Target defines the sender (Subject element)
and receiver (Resource element) in an interaction. Nested within a Poli-
cySet element it either refers to the document class or a Global Workflow
(Resource element).

The transformation algorithm performs a depth-first search through the
object tree holding the document nodes represented as an XML tree in the
XMI-file. In the example, the order of the sequence’s children is kept, each
one translated according to the defined order.

The attribute RequestContextPath of the element Rule defines two of
the four core pieces of information: it specifies a pair consisting of a document
node and an associated Security Policy (e.g., Confidentiality, Integrity or Non-
repudiation). The value is produced according to the production rules specified
in Figure 9.2. The other two information parts correspond to the Sender and
the Receiver. The invoking party (Sender) is referenced in the Resource
section of the policy’s Target.

The result of the transformation process is a policy file specifying the
Security Policy for inbound messaging. For an example please, refer to Figure
8.11 in Chapter 8 on p. 131.

9.2.2 Outbound Policy Files

Figure A.2 in the Appendix on page 227 contains the rules for the model-to-
code generation of Outbound Policy Files. All XACML elements, attributes

www.manaraa.com

9.3 Services Transformations 145

Fig. 9.2. Production Rules for RequestContextPath Attribute

and functions needed by the component are listed in the table. Abstract and
concrete syntax of Outbound Policy templates comply to the abstract syntax
specified on p. 136 in Chapter 8.

The result of the transformation process is a policy template for outbound
messaging (cf. Figure 8.13 on p. 137).

9.3 Services Transformations

Services Transformations describe the rules for the generation of those files
that will configure the service components of the target architecture so that
their interface definitions realize the specifications of the interactions as de-
fined in the Global Workflow Model and the Document Model. Here, we as-
sume that the target service component is a process engine implementing a
Web services based process language (e.g., Oracle BPEL Process Manager
[7]). We chose the WSBPEL orchestration language, one of the de-facto in-
dustry standards. It may be any other process standard as well. The process
of Services Transformation yields two categories of artefacts (for the sake of
simplicity, we assume that a category corresponds to one file):

1. BPEL process description files (.bpel file extension) capture those parts of
the process logic that specify interaction activities with partners and the
messages that are exchanged. This corresponds to information contained
in the Global Workflow Model and the Interface Model.

2. Calls to and from local service components are added manually after the
generation process. WSDL files (.wsdl file extension) correspond to a tech-
nical description of interfaces and data types used and provided when
interacting with partners.

www.manaraa.com

146 9 Model Transformation & Code Generation

3. XML Schema files are used to define the communication contract between
Partner Roles in a Gwf. This means that the actual data format in which
XML data is transmitted is described in XML Schema (for the basic spec-
ification please refer to [54]). We use XML Schema to define the structure
of messages in an interaction.

Please refer to [86] for a detailed account on services transformation with
Sectet.

9.3.1 Global Workflow to Local Workflow Translation

BPEL4WS depends on XML-based specifications like WSDL 1.1, XML
Schema 1.0, XPath 1.0 and WS-Addressing. The BPEL4WS process model is
layered on top of the service model defined by WSDL. The aim of this section
is to cover transformations only for basic structures and concepts of the lan-
guage needed to describe those process tasks representing endpoint of binary
interactions. We do not discuss advanced data handling (e.g., assignment),
message correlation, scopes and fault handling. As to structured activities we
only use sequence indicating a sequential flow of control between interaction
tasks. We cover the following interaction patterns:

1. In an asynchronous interaction, a task either invokes or provides an oper-
ation of an interface.

2. In a synchronous invocation, a task invokes an operation but also provides
a call-back operation.

Figures A.3 and Figure A.4 in the Appendix on pages 228 and 229 show
the translation rules for the BPEL file.

Figure 9.3 diagrammatically shows how the part of the GWfM relevant
to the Municipality is mapped to BPEL Activities according to the UML
Profile for Automated Business Processes [137]. Code generation out of the
LWfM specified in UML is straightforward using the approach and the tools
described in [137].

In our case, the binary interaction with the role TaxAdvisor is mapped to
synchronous receive-reply BPEL interaction-pattern. In case the workflow en-
gine makes additional calls to local services, the Municipality would have to
insert respective activities manually (e.g., by inserting an additional partition
for a port and changing the control flow by rearranging the graph depicting
the control flow, as done in Figure 7.10 on p. 106 in Chapter 7).

9.3.2 Global Workflow to WSDL Description

A BPEL4WS process is generally defined “in the abstract” by referencing
only the portTypes of the services involved in the process Ű corresponding
to the abstract part of the WSDL file. The absence of bindings and service
elements in the WSDL document aims the reuse of business process definitions

www.manaraa.com

9.3 Services Transformations 147

Fig. 9.3. Model-to-model Transformation Generating a BEPL File for Role Munic-

ipality

over multiple deployments of compatible services. For simplicity, all WSDL
definitions required by the business process are included in the same WSDL
document.

The main concepts are:

1. The definitions element acting as the root element
2. type definitions defining the complex data-types. The schemas of data-

types correspond to the documents defined in the Document models. The
classes of the Document Model are mapped in a standard way to xsd
schemas, as described in [136]. Every document is imported through an
import declaration.

3. message definitions describe the parameters for service invocations. They
use data-types defined in the type definitions section and correspond to
document classes.

4. portType definitions group operations into logical sets.
5. partnerLinkType definitions are BEPL specific WSDL extensions (indi-

cated by the namespace plnk) that specify the pattern of interaction used
by process tasks.

Figure A.5 in the Appendix on page 230 contains all the rules for translat-
ing WSDL elements out of respective elements in the Global Workflow Model
and the Interface Model.

Figure 9.4 diagrammatically shows how the part of the GWfM and the
Document Model relevant to the Municipality is mapped to Message Classes
according to the UML Profile for Automated Business Processes [137]. Code
generation out of the LWfM specified in UML is straightforward using the
approach and the tools described in [137].

www.manaraa.com

148 9 Model Transformation & Code Generation

Fig. 9.4. Model-to-model Transformation Generating WSDL Files for Municipality

9.3.3 Global Workflow to XSD Schema Template

Elements of the Document Model are translated into the XML Schema data
definitions which are referenced by the WSDL file of a process.

XML Schema has many predefined basic data types such as integer, string,
or date. Basic data types are extended by introducing the simpleType tag.
This allows to set constraints like, minimum length, character patterns or enu-
merations on a basic data type. With simple types one can describe the allowed
content for attribute and the content of elements with character content. The
nesting of XML elements and their attributes, is done with a complexType
tag. Complex types support the description of the cardinalities and optional
use of contained elements and attributes.

The generation process for the XML Schema files can be divided into
the following steps (please refer to [86] for a detailed account on Services
Transformation with Sectet):

1. For every Document Class in the Document Model a new XML Schema
file and with the starting schema element and the respective the XML
Schema namespace definition, and the definition of the target namespace
of the process is created.

www.manaraa.com

9.4 Implementing Transformation 149

2. A top level element tag is added to the file with the name of the Schema,
and a complex type is added.

3. attribute tags for all attributes of the schema that start with a @ are
generated.

4. For all containment relationships element tags with the name of the re-
lation as element name, and the name of the complex or simple type as
associated type are added. Bounds are defined according to the cardinal-
ities specified by the relation.

5. For each element tag that does not refer to a basic data type, a complex
or simple type outside the previous element is created.

6. Repeat the creation of elements and attribute inside just created complex
types.

7. Repeat the whole process for the outgoing message.

9.4 Implementing Transformation

The Transformation Component translates the models into executable config-
uration artifacts for the Reference Architecture. There are many approaches
to implement transformation functions in order to generate executable or
machine-readable policies. We sub-sequntyl briefly sketch these approaches.

9.4.1 Template Based Transformations

In a first project phase, the component was prototypically implemented with
XSLT, a language for transforming XML documents into other XML docu-
ments. Transformations are expressed in XSLT rules that take a source tree
and transform it into a result tree. The transformation is achieved by associ-
ating patterns with templates. A pattern is matched against elements in the
source tree. In our case, the transformator worked the following way:

1. models are exported from UML tools as XMI files,
2. XMI files are parsed by the transformation component, an internal tree

representation created,
3. template rules matching the nodes of the source document are identified
4. nodes of the source document are transformed according to the processing

instructions in the XSLT stylesheet.

The opportunity to apply the approach to different scenarios (e.g.,
e-government and healthcare) gave rise to a set of requirements whose
integration into the framework was essential to its usability in a real-life
context. Most of these issues, like the problem on how to manage Role Based
Access Control in a virtual process without a central instance of control
(decentralized management of RBAC) were practical in nature and could be
resolved by implementing additional modules for the framework. Neverthe-
less, some of them touched the conceptual foundations and questioned some

www.manaraa.com

150 9 Model Transformation & Code Generation

of the early design decisions. Among them was the choice of XSLT for code
generation from respective models. XSLT Ű a lightweight technology for the
transformation of XML documents - perfectly fits the needs of a research
project looking for an easy to use technology for the rapid development of a
demonstrator tool as a proof-of-concept. Nevertheless, the technology showed
its limitations. New requirements in the form of more complex security pat-
terns were constantly emerging. The domain language had to be extended
syntactically and the adaptation of XSLT templates to more complex trans-
formation functions took a great deal of time. The handling of XSLT revealed
as being too cumbersome. Consequently, the transformation component was
redesigned from scratch using meta-model based transformation rules.

9.4.2 Meta-model Based Transformations

Based on OMG’s transformation specification MOF Query/View/Transfor-
mation (QVT) [194], the component now supports an intuitive rule-based
mapping between platform independent source and platform specific target
models. Source and target models can easily be defined or adapted by im-
porting the respective meta-models. This supports domain experts in rapidly
developing and adapting a domain specific language in an agile way and vi-
sualizes the transformation process.

Figure 9.5 shows an excerpt from the scripts used to transform a Domain
Model to the XACML policy meta-model.

Fig. 9.5. Model-to-model Transformation Generating XACML Policy Files

www.manaraa.com

9.4 Implementing Transformation 151

The transformation defines two typed candidate models (as parameters):
an input model WFSMInstance of type DomainModel and an output model
XACMLPolicySet of type XACMLPolicy. Mappings are defined by refenrencing
the source model elements to their counterparts in the target (e.g., the id of
the Gwf GWfID to the destination element of the root policy set Target).

For details on MOF/QVT transformations in the Sectet-framework,
please refer to [107].

www.manaraa.com

10

Software & Security Management

For its successful application, Model Driven Security relies heavily on a series
of tools. We have implemented our approach as a proof-of-concept framework.
The framework consists of prototypical tools, we developed ourselves and in-
tegrates various third party components. It supports the development of all
models and the generation of systems for their implementation in local run-
time environments. We first introduce the set of tools the stakeholders plan-
ning the realization of a Global Workflow may need (Section 10.1) and give
an overview of how the deployment process may be managed (Section 10.2).

10.1 Tool Chain

10.1.1 Modeling

Modeling tools are at the core of every Model Driven Development initiative.
They are used to build the Models on the basis of the Domain Specific Lan-
guage (DSL). Graphical DSLs provide a very intuitive way to build models,
and – if based on the UML – realizable with a reasonable amount of effort.
UML tools, like MagicDraw or Ecipse Omondo provide the features that are
absolutely necessary for the use of UML as a DSL in conjunction with other
tools. These features are:

1. Meta-modeling and profiling features. Ideally, the case tool supports the
definition of meta-model types and allows for the specification of con-
straints on meta-models. In case this is not possible, the meta-model have
to be expressed with a corresponding UML-Profile.

2. XMI-Export. The tools have at least to support the export of model in-
stances in the XML Metadata Interchange format. Exporting models is
a prerequisite for further processing by other tools e.g., Transformation
Components. Its specification Version 2.0 XMI it represents an efficient
and coherent way to define models that can be exchanged by different
tools.

www.manaraa.com

154 10 Software & Security Management

3. Stereotypes and Tagged Values. The tools have to support the annotation
of model elements with stereotypes and/or tagged values and dependencies
between them.

10.1.2 Code Generation

Once exported as XMI files, the models are parsed by a component that
validates the models according to the meta-models and – in a second step
translates the models into code or into another model.

An optimal design of the component realizes the following two principles.
First, it would rely on Abstract Syntax: ideally, the model validation occurs
independently of the concrete syntax of the model This allows for changes
in the concrete syntax without affecting the component. A new parser for
reading the changed syntax would be all that is needed. Validation rules
would remain unaffected by the syntactical changes. Second it would work
with explicit metamodel representations: by relying on representation of the
meta-model the validation and transformations rules remain independent of
their syntactical representation and vice versa. In this case models represent
instances of the meta-model. The high level of abstraction allows for a more
efficient specification of complex rules. Our code transformation component is
a Java based tool that works according to the following steps (Figure 10.1):

1. It parses the source model in its XMI-format as exported from the UML
tool.

2. It creates an instance of the source meta-model and populates the object
structure (Document Object Model (DOM) tree), with values from the
source model.

3. The source object structure is transformed in an object structure corre-
sponding to the target meta-model.

4. The populated instance of the target meta-model is transformed into the
concrete syntax of the target language.

Fig. 10.1. Components and Artefacts in the Transformation Process

www.manaraa.com

10.1 Tool Chain 155

10.1.3 Build Tools and Integrated Development Environments

We use the Eclipse Integrated Development Environment as a framework for
the integration of all the components [190]. The management of the source
models and code artifacts requires a build tool that supports the compila-
tion packaging and further processing. Ideally, the build process should also
automate the deployment process on the Reference Architecture. We use the
Java-based build tool Apache Ant [188].

10.1.4 The Realization Process

Roughly simplified, the realization process of an inter-organizational workflow
actually consists of the three phases: analysis phase, design phase and the
implementation phase. The analysis was presented in Chapter 6

The realization of an inter-organizational workflow usually starts with the
requirements modeling phase. The stakeholders agree on the business goal,
and the terms under which they want to realize through their collaboration,
followed by the design phase and ends with the implementation. This first
step leads to a common understanding of the structure of the “virtual” or the
global workflow. The result is a semi-formal model called the Gloabl Workflow
Model with asscoiated Security Policies. Ideally, this includes the format, the
structure and the sequence of the messages that are exchanged, the interfaces
to the “business” or workflow logic each partner agreed to contribute to the
composition, to operation semantics and to run-time constraints specification,
information that is typically published in WSDL files and technical Models of
UDDI Registries.

From here on, the participants have all information necessary to imple-
ment “interface”-compliant functionality at their nodes. In practice it is al-
most impossible to impose a straight top-down realization process on the
participants for various reasons. First, it is very improbable that the part-
ners will implement their logic from scratch. Very often partners have already
implemented some kind of application logic, maybe even made it accessible
to customers as a Web service. They probably want to reuse functionality of
existing components running on a working infrastructure. The components
reuse and their integration is a matter of cost-efficiency and requires some
in-depth expertise of the technical staff. Nor is it very likely that the part-
ners will completely redesign the interfaces to their business logic to make
them compliant to the naming conventions specified in the global workflow.
Businesses and administrations can have organizational structures that may
thwart a top-down approach from the very beginning (e.g., every business unit
has its own technical infrastructure; administrative units may have different
reporting hierarchies, etc.).

This is why the stakeholders will proceed according to a hybrid approach
projecting some of the interfaces of their local business logic to operations in
an Interface Model, which conforms to a uniform technical, syntactical and

www.manaraa.com

156 10 Software & Security Management

semantic specification the partners agreed upon. In turn, they may wrap some
of their local applications in order to comply with operations signatures of the
Interface Model. If, for example, the partners agree to implement the global
workflow based on Web services, some partners will have to provide a Web
services wrapper for their application logic.

10.1.5 The Engineering Process

The realization of a scenario based on Model Driven Security needs two pre-
requisites: first, the existence of a comprehensive specification of functional
and security requirements, second, the existence of an MDS Framework con-
sisting of tools supporting the Domain Architecture. The tools should support
the modeling in a Domain Specific Language and provide transformation func-
tionality targeting a specific platform.

In case the Domain Architecture has to be adapted or even developed from
scratch, both strand of activity, the development of the domain architecture
as well as the requirements analysis for the solution to be realized, can occur
in parallel, possibly iteratively. They may partly dependent on artifacts from
the other activity, taking them as input, this supporting an incremental, agile
engineering methodology. For the sake of simplicity and readability, we de-
pict this process without iterations in Figure 10.2. Once the DSL Framework

Fig. 10.2. The Process of Realizing a Domain Architecture

www.manaraa.com

10.2 The Deployment Process 157

properly configured in order to support the Domain Architecture, the solution
can be designed, and transformed into an implementation.

10.2 The Deployment Process

Figure 10.3 exemplarily shows the process of realizing a Global Workflow. The
partitions represent the tools that are used for executing the actions. Tools
used by all partners in a collaborative manner are rendered as grey partitions,
whereas white boxes represent tools that have to be used by individually in or-
der to configure their target architecture properly. Partners, having agreed on
a Global Workflow scenario, model the scenario as a Global Workflow Model
with all related models with the help of a UML tool. The files are exported as
XMI files and imported into the SECTET framework, which translates them
into configuration artifacts for the local environments. The files are placed in
a shared workspace. Every partner picks his files and deploys them on his in-
frastructure. In case he uses a BPEL based workflow Management system, he
loads the stubs into his design tool, completes them with calls of local services
and finally deploy them.

Changes in the GWf (e.g., a reordering of the document flow or a change in
Security Policies) necessitates a start of the deployment process from scratch.
Changes in the LWf can be accommodated locally by Partner as long as the
interfaces to his LWf as specified in the GWfM remain unchanged (the BPEL
stubs generated out of the GWfM stay the same).

www.manaraa.com

158 10 Software & Security Management

F
ig

.
1
0
.3

.
T

h
e

D
ep

lo
y
m

en
t

o
f
a

G
lo

b
a
l
W

o
rk

fl
ow

www.manaraa.com

11

Extending Sectet: Advanced Security Policy
Modeling

In past chapters, we showed how to model Basic Security Policies based on
the three Security Objectives Confidentiality, Integrity, and Non-repudiation.
We specified a Reference Architecture based on Web services technologies and
standards. Security Policies were mainly enforced through the integration of
corresponding basic cryptographic primitives (e.g., encryption, digital signa-
tures, and a combination of them orchestrated by a protocol). The gap between
abstract policy models and technology was bridged by transformation rules
for a Transformation Engine generating the artifacts for the configuration of
architecural components enforcing the policies.

Nevertheless, in an industrial context, security concerns usually go way
beyond what we cover with the category Basic Security Policy. This chapter
shows how to extend the Sectet-framework to cope with complex security
concerns. We introduce the category Advanced Security Policy which is of
practical relevance to many contemporary scenarios in e-government and – as
we will see in the next chapter – in healthcare. It covers policies like Context
Dependent Access Policies, the Qualified Signature, the Four-Eyes-Principle,
Privacy Policies, and Usage Policies. We show how the three building blocks
of the Sectet-framework are extended to cope with this new categories of
complex security concerns.

This chapter is organized as follows. We start with a brief motivation for
the introduction of the category Advanced Security Policy in Section 11.1.
We sketch the extensions to the existing structure of the Domain Specific
Language (DSL) in Section 11.2. We show how to model Advanced Security
Policies with Sectet-PL, a language for dynamic constraints modeling in
Section 11.3. We will cover dynamic access control, rights delegation and pri-
vacy policies extensively. For these policies, we will show how to integrate the
meta-model extension into the framework in Section 11.4, the extensions to
the Target Architecture in Section 11.5, and Sectet-PL-Transformations in
Section 11.6. We close with a brief sketch on how to model further Advanced
Security Policies and how they may be enforced in the Reference Architecture.

www.manaraa.com

160 11 Extending Sectet: Advanced Security Policy Modeling

11.1 Motivation

In almost any industry, the electronic realization of security-critical processes
is tightly coupled with concerns about how to best realize security in com-
pliance with the many provisions, regulations and laws imposed by regional,
national, international and industry legislations.

In healthcare, access rights may have to dependent on dymanic, time- and
context depend aspects. The so-called Break-Glass Policy is defined as an
authorization scheme to allow access to a patient’s medical record in case of
an emergency (e.g., [173]). Another example from healthcare is the 4-Eyes-
Principle, a regulation for access control, stipuloating the patient’s presence¨
when a physician accesses her medical record (see e.g., [202, 182]).

E-procurement – the purchasing of goods via electronic media – can be
carried out by either private-sector or public-sector actors. If the public sector
calls for tenders, such as in the case of public utilities and telecoms, public
sector regulations apply. Very often, this kind of scenario requires partial or
full Anonymity of bidders to guarantee the execution of a fair procedure.

In all these cases, the notion of security obviously has to encompass much
more advanced concepts. Compliance to the requirements of the legal envi-
ronment is a major issue, but only one facet of the problem.

On the other hand, information-intensive industries, like e-government and
healthcare usually have to cope with diverging interests of a scenario’s stake-
holders. For example, a patient may never be the producer of the data of his
medical record. Nevertheless he retains exclusive legal rights over his medical
records: he decides upon who accesses the records under which conditions. The
organizations who store and process sensitive information are responsible for
preserving data confidentiality at all cost, even if the records are distributed
among various stakeholders (hospital, practitioners, insurances etc.) with dif-
ferent rights to read and process the information. The simple policy of end-to-
end confidentiality becomes a complex privacy policy specifying fine-grained,
revocable, time-, context- and history dependent access rights to heteroge-
nous resources. This setting deserves to model and enforce Dynamic Access-,
and Ongoing Usage Policies in a distributed environment where control over
information has to be enforced even on untrusted hosts.

As a consequence, Security Objectives can only partially be realized with
a Basic Security Policy or even a combination of them. Taking the Qualified
Signature as an example: this is a policy which actually neither enforces the
Objective of Integrity nor does it correspond to an Integrity policy. There is
a different meaning in the context of the use of these two types of signatures
in the Problem Domain: an Integrity policy is meant to identify unauthorized
tampering with documents, whereas a policy stipulating a Qualified Signa-
ture is primarily a means to prove someone’s identity by making respective
information available as needed. Thus the primary function of the concept of
Qualified Signature seems to cater for some kind of Availability. However, the

www.manaraa.com

11.2 Extending the DSL 161

Qualified Signature may also be used to enforce Non-repudiation - so as to
“seal” an adminsitrative act (e.g., the registration of your marriage).

Modeling Advanced Security Policies based on consistent Security Models
and their enforcement with appropiate technology in the Reference Architec-
ture obviously represents a major challenge.

11.2 Extending the DSL

11.2.1 A New Security Objective

Following our discussion in the previous Section, Access Control- and Usage
Control- and Domain Policies represent types of policies that obviously do
not directly enforce either of the three Basic Security Requirements, namely
Confidentiality, Integrity or Non-repudiation.

Therefore, we introduce Availability as a new class of Security Objective
(Figure 11.1) to cope with these policies. Availability refers to the ability to
use an object when needed. But Availability is not only an important aspect
of reliability, guaranteeing existence of a resource. In security, the aspect of
availability is interpreted in the sense that someone may use a resource, ac-
cess information, or call a service as needed under specific conditions. These
conditions may be linked to various attributes of the system, its environment
or the actors themselves in the past, the present or even the future. Note that
in this sense this new type of policy introduced subsequently also caters to
the Objective of Confidentiality: information should not only be available at
any time but should almost certainly remain confidential in most cases. Nev-
ertheless, we only show the policies’ link to the most dominant aspect. And
this is Availability.

Fig. 11.1. Extending Sectet with Security Policies for Availability

www.manaraa.com

162 11 Extending Sectet: Advanced Security Policy Modeling

We also note, that we sub-classed Non-repudiation as specializing Avail-
ability. We motivate that adaptation with the meaning of Non-repudiation as
having information available when needed as a proof for dispute resolution.

11.2.2 Advanced Security Policies

Figure 11.2 shows some types of Domain-, Access Control- and Usage Control
Policies enforcing the requirement of Availablility.

The Four-Eyes-Principle, the Break-Glass-Policy, and the Authorization-
Policy and its “dynamic” specialization, ContextDependentAP represent poli-
cies realizing a specific aspect of Access Control, whereas a Privacy Policy
specifies ongoing conditions under which a subject is granted access to some
resource, thereby realizing Usage Control.

11.2.3 Introducing the RBAC Policy Model

We base our policies for the specification of access rights on Role Based Access
Control (RBAC) [169]. RBAC is a security model for policies where Users are
assigned Roles, holding Permissions, which in turn specify access rights to
Objects. For example, a clerk holding the (local) role CharteredAccountant
within a company holding the (global) role TaxAdvisor is allowed to send a

Fig. 11.2. Extending the Abstract Syntax with Advanced Security Policies

www.manaraa.com

11.2 Extending the DSL 163

document of type pocessedAS to a service provider with role Municipality
by calling a service sendProcessedAS.

So-called static constraints support the modeling of User-Role and
Permission-Role Assignment. In our running example, in Chapter 7, sta-
tic RBAC was modeled implicitly in the UML Activity Diagram by qualifying
the document flow between the two roles as confidential (cf. Figure 7.24 on p.
117). It was modeled explicitely by associating roles to respective interfaces
in the Interface Model (cf. Figure 7.19 on p. 113).

We integrate the RBAC model into the Sectet-DSL and enhance it by
intoducing the concept of Dynamic Constraints. Figure 11.3 shows how the
RBAC Policy Model (Box C) is related to Security Policies (Box B) and model
elements of the Document- (Box D) and the Role Model (Box E): the policy
model provides the conceptual structures to relate Security Policies to model
elements of the Application Domain.

Fig. 11.3. RBAC Security Policy Model in Sectet

www.manaraa.com

164 11 Extending Sectet: Advanced Security Policy Modeling

11.3 Modeling Policies with Dynamic Constraints

11.3.1 Sectet-PL

Dynamic Constraints define rules and conditions under which a given role is
permitted (or prohibited) to access a specific ressource (e.g., to call a specific
service). These rules are called Permission Assignment Constraints (PAC)
and are expressed with Sectet-PL, a predicative language in the style of
the Object Constraint Language (OCL) [41]. Sectet-PL allows the specifi-
cation of fine-grained, context- and data dependent access permissions based
on roles. Positive and negative permissions are specified based on predicates,
and refer to any UML diagram. Sectet-PL [38] is tightly integrated into the
modeling component of the Sectet-framework. Initially used for the specifi-
cation of dynamic access control requirements, it has been extended to cope
with attribute-based delegation of rights [15] and privacy-enhanced access
control [14].

Permission Assignment Constraints are specified according to the follow-
ing generic structure:

context Entity E

perm[rolei] : condExpi

...
proh[rolej] : nondExpj

...;

A positive rule perm[rolei] : pcondExpi (is part) of a positive PAC and
describes the condition pcondExpi under which some role rolei is permitted
to access the ressource (or to call a web service operation). A negative rule
proh[rolej] : ncondExpj (is part) of a negative PAC and describes the condi-
tion ncondExpj under which some role rolej is prohibited to access the entity
E (e.g., to call web service operation).

In case of the entitiy being a Web service, the conditions may be permis-
sion predicates over the formal parameters of the Web service (x1 : T1TT , x2 :
T2TT , ..., xn : TnTT). Permission predicates allow navigation through XML docu-
ments, comparison of expressions and the connection of predicates by logical
operators, thereby providing fine-grained access control over ressource.

Positive PACs are further divided into two types: the General PAC classify
a constraint which is general and thus applicable to every role whereas a
Data Dependent PAC classifies a constraint which is specific to a role profile.
For example, a constraint dependent on the attribute values of a specific role
(e.g., a role CharteredAccountant with a Special_Skills-attribute in public
finance). These constraint types are used to refine the inheritable permissions
in the presence of role hierarchies.

A PAC is attached with a UML stereotype named accordingly (cf. Figure
11.5).

www.manaraa.com

11.3 Modeling Policies with Dynamic Constraints 165

11.3.2 Static RBAC

Figure 11.4 exemplarily shows how to model permission-role assignment based
on static RBAC. The Role Model is used to aggregate the rights of a partic-
ular role. In our scenario, the TaxAdvisor represents a Partner_Role in a
global workflow. According to the model the Partner_Role and hence all lo-
cal Domain_Roles are allowed to access the Municipality’s TaxFileService
in order to get a TaxFile. Note that access permissions are defined at the
service-level, which means, that the requester is allowed to get any file (not
only his client’s) at any time and would have complete access to the docu-
ment’s content. This is where the Permission Assignment Constraints come
into operation.

11.3.3 Dynamic RBAC

Figure 11.5 shows how Permission-Role assignment may be further confined
through Permission Access Constraints. PACs are associated to Interfaces in
the Interface Model, but actually refer to elements of the Role Model – en-
hanced by roles internal to the domain (cf. Figure 11.3 on p. 163) – and to
elements of the Document Model, thereby achieving document level granular-
ity of access rights.

Fig. 11.4. Modeling Permission-Role Assignment with Static RBAC

www.manaraa.com

166 11 Extending Sectet: Advanced Security Policy Modeling

Fig. 11.5. Modeling Permission Assignment Constraints with Sectet-PL

Positive or Negative Constraints. PAC1 states that a requester holding
the role TaxAdvisor, identified by his TA_ID, is not allowed to access the
TaxFileService on weekends. A negative constraint (stereotyped negative-
Constraint) is attached to the Web service TaxFileService. The service
reroutes the call to the security infrastructure which verifies compliance to
the parameters. Note that PAC1 could also have been formulated as a posi-
tive permission allowing access on working days only.

Data Dependent Constraints. PAC2 states that a requester holding the
role TaxAdvisor can only read files of a client (identified through the para-
meter CLI_ID in the request) if he is mandating specifically that client. This
constraint is a Data Dependent PAC, where the parameters of the service callCC
refer to an underlying XML document representing the object of interest as a
Document Model.

Data Dependent PAC s depend on the “internal representation” of the re-
quester in the Document Model of the provider (cf. Figure 11.6). The mapping
is achieved by the function map() - an external library function supported by
the Reference Architecture. The identification variables (e.g. subject) asso-
ciated with these external functions distinguishes different types of callers.
Hence, subject.map() makes the connection of the calling actor to his in-
ternal representation in the business logic, thereby enforcing data-dependent
access control (e.g., the actor has access to his own data). External functions
are stereotyped with external. This stereotype indicates that the correspond-
ing interface is not transformed to XML schema but refers to the security
infrastructure and that it is needed in order to verify a certain relationship
between the caller of the Web service and a particular element of the Docu-
ment Model.

www.manaraa.com

11.3 Modeling Policies with Dynamic Constraints 167

Fig. 11.6. Document Model for Data-dependent PAC

In PAC2, an association between the calling role TaxAdvisor and the
Client is required. The latter’s identity is passed as a parameter with the
call (CLI_ID). The subject.map construct maps the caller to its internal
representation in the Document Model, class TaxAdvisor. Notice the differ-
ence between the role TaxAdvisor in the Role Model standing for the service
reuqester in the Global Workflow and the class TaxAdvisor in the Document
Model standing for the internal representation of a tax advisor’s data at the
partner node.

11.3.4 Rights Delegation

Delegation of Rights in Distributed Environments

Conventionally, trust is enforced by a central authority that knows all actors
and possibly all relationships between them. But the realization of the concept
of trust through a central authority is not always a viable option. In distrib-
uted scenarios, where actors do not know all of their partners, where they
cannot keep track of every relationship between all of them and do not want
a central authority to enforce access rights to the resources in their domains,
authorization remains a local responsibility and thus distributed by nature.
The distributed delegation of rights is a concept that supports the notion of
trust in distributed environments and thereby fosters cooperation of partners
across domain boundaries.

Restricted Delegation of Rights & Privacy

The Sectet-framework supports the restricted delegation of rights in a Ser-
vice Oriented Architecture (SOA). Restricted delegation of rights means that

www.manaraa.com

168 11 Extending Sectet: Advanced Security Policy Modeling

rights of the delegator or the delegatee may not depend only on their roles
but also on other kind of information like credentials of the delegator, data of
the business logic or parameters of the delegated web service.

Our Model for the restricted Delegation of Rights combines the concept of
roles from RBAC with the predicative specification of Sectet-PL.

In scenarios where a centralized repository is not always a viable optione,
peers retain control over their ressources and have their own privacy require-
ments. As requests to access personal data may come from within as well
as outside the domain boundaries, compliance with the privacy requirements
of other peers in an online business scenario may have to be enforced. The
Sectet-Framework integrates the delegation of rights with privacy-enhanced
access control i.e. delegation of rights in a privacy preserving distributed en-
vironment.

Adhering to the priciples od model driven security, models are translated
into XACML Delegation Policies, which are interpreted and enforced by the
security infsrtructure.

Modeling Delegation of Rights

Figure 11.7 shows an example delegation in a distributed environment. In the
scenario the role TaxAdvisor delegates the right to access files of his clients
to a subject holding the role Lawyer. The latter or may not be a sub-role of
the former’s domain (aka a Domain_Role). In our example the role Lawyer
represents a security domain of its own (aka a Partner_Role in a Global
Workflow).

In order to check the access rights of the service requester (SR) in our case
holding the role Lawyer, the service provider (SP) – Municipality – clarifies
the requester’s attributes with a third party Ű- the attribute authority (AA),
which in our case is the TaxAdvisor. In case the delegatee is a Domain_Role
of the delegator, the attribute authority is the requester’s home domain (e.g.,
TaxAdvisor for a JuniorAccountant). For security, privacy and management
reasons, we assume that every Partner_Role maintains the attributes of the
users associated to his domain.

Delegation Constraints are specified according to the following generic
structure:

context webService : op(x1:T1, . . . , xx:Tn)

perm [DelegatorDelegator rolei, DelegatorDelegator rolei] : condExpi

...
proh [DelegatorDelegator rolej , DelegatorDelegator rolej] : ncondExpj

...;

A positive rule pcondExpi describes the condition under which a role
Delegator_rolei is permitted to delegate the right to execute an operation

www.manaraa.com

11.3 Modeling Policies with Dynamic Constraints 169

Fig. 11.7. Example Policy Specifying Delegation of Access Rights

op to a role Delegatee_rolei. A negative rule ncondExpj is to be interpreted
accordingly. The conditions are permission predicates over the formal para-
meters of the Web service (x1 : T1TT , x2 : T2TT , ..., xn : TnTT).

A Delegatee_rolei can further delegate the right to execute a service to
another role forming a delegation chain which is verified through a mechanism
devised in XACML 3.0 called Chain Check (please refer to [24] for details).

Restricted delegation in distributed environments may require the decla-
ration of Identification Variables. Associated with the external functions they
help differentiating between different types of the caller e.g. the identification
variable delegator classifies the individual who issues a delegation policy
and the identification variable delegatee classifies the individual who was
transfered the access right.

The special constructs delegator.map(T) and delegatee.map(T) au-
thenticate the caller of the web service (where the way how authentication
is done can be freely chosen), check if the participants (the delegator and
the delegatee) are in the specified roles and map the participants to an in-
ternal representation (of type T) in the Document Model. In case if any of
the participants in a delegation scenario belong to some other partner in an
inter-organizational workflow, the function map(T) requests the attribute val-
ues that are not present locally from the corresponding domain through an

www.manaraa.com

170 11 Extending Sectet: Advanced Security Policy Modeling

attribute requesting service. The delegator.map(T) maps the issuer of the
delegation policy and the delegatee.map(T) maps the caller of the web ser-
vice to a class in the Document Model. The only difference is the context in
which these special variables delegator and delegatee are used.

The functions map an external role (e.g., Lawyer) to element in the Docu-
ment Model (e.g., TaxAdvisor). Such an element would have to be stereotyped
<d> (d for distributed). This indicates that attribute values in the correspond-
ing Document Model can be distributed, which means that the corresponding
entity is located with some other partner in the workflow. Attributes and enti-
ties that are not available locally will be requested by an attribute requesting
service from the corresponding attribute authority.

These constraints including the delegator and the delegatee roles, the oper-
ation and the rules are then transformed to trusted XACML delegation policy
files. As will be described in Section 11.6.

Usually, the specification of restricted delegation is either limited to a
single domain or subject to severe inter-operability issues. XACML provides
a generic solution: it can express fairly complex delegation policies and can
be deployed across domain boundaries. Nevertheless there remain substantial
challenges on how to enforce authorization in these scenarios (please refer to
[79] for details).

Modeling Privacy Policies

Sectet-PL also supports the specification of restricted Privacy Policies. This
means that requests to access sensitive data may not depend only on the role
of the data requestor but also on consent given by the subject.

Fig. 11.8. Example Policy Specifying Privacy Requirements

www.manaraa.com

11.4 Integrating Sectet-PL into the Sectet- Framework 171

Referring to our example an Attribute Authority may have a Privacy Pol-
icy restricting the release of information about its memebers, employees or
users. Figure 11.8 shows an example Privacy Policy of an Attribute Authority
permitting the release of the a client’s address to a requester with role Tax-
Advisor only in case the client is not employed in public services (attribute
Profession) and explicitly gave his consent (method UserConsent(self)).

Privacy Policies are attached as constraints to the classes to be protected.
This occurs with Sectet-PL. Constraints are specified according to the gen-
eral structure of constraints as presented in Section 11.3.1.

11.4 Integrating Sectet-PL into the Sectet- Framework

11.4.1 Metamodel Extensions

The key extension at the meta level was the integration of the RBAC Security
Policy Model (cf. Figure 11.3 on p. 163). Recalling our Security Domain Model
we defined a Constraint as further confining a Permission by specifying a
predicate referring to a Document or parts of it and one or more Roles.

Figure 11.9 shows how the basic Security Model is enriched with
constraints to enforce specific model semantics. Each Permission can be
either positive or negative depending on the isNegative attribute. The
permissionType attribute categorizes a Permission (e.g., as either dataDe-
pendentPermission, generalPermission etc.). The Role element acts a
proxy class and serves as a reference to a Domain_Role or a Partner_Role
in the Role Model. In case of isDelegationPerm is true, two roles are asso-
ciated with the corresponding Permission (this requirement is exemplarily

Fig. 11.9. Example Constraint on the RBAC Security Model for Expressing Dele-
gation

www.manaraa.com

172 11 Extending Sectet: Advanced Security Policy Modeling

described as an OCL constraint). The associated Object is also a proxy class
and serves as a reference to a specific Operation of a Service within the
Interface Model or a reference to a protected element in the DocumentModel.

So far, most conceptual elements needed for the integration of Sectet-
PL were already defined in the meta-models of the Interface View. We sub-
sequently give details on major meta-model level adaptations.

Role Model

The four roles for the delegation scenario, Delegator_role, Delegatee_role,
Attribute Authority, and Attribute Requester are modeled as instances
of type Partner_Role, the first two may be of type Domain_Role.

Document Model

The Document Model provides a data type view for the documents travel-
ling between the partners in an inter-organizational workflow. However, in
the context of dynamic constraints it also provides an abstract view of the
attributes of the actors accessing the services, the resources and the corre-
sponding relationship between them in the form of associations. This is the
model that needs the most comprehensive extension compared to its use for
basic Security Policies (cf. Chapter 7).

Each DataType in the Document metamodel is categorized as either Prim-
itiveType, ComplexType, or Enumeration (Figure 11.10). An ActorClass
specialises ComplexType and corresponds to the representation of a caller’s
role in the Document Model. This is why it is not of type role. Its associated

Fig. 11.10. Extensions to the Document Model

www.manaraa.com

11.4 Integrating Sectet-PL into the Sectet- Framework 173

attributes are of type Properties. The Interface with the stereotype ex-
ternal contains external functions (externalOperations). This stereotype
indicates that the corresponding entity is not transformed to XML schema
but verifies the relationship between the caller of the service and a particular
entity in the Document Model. However we do not consider it a conceptual
element at the meta-model level, because it does not represent a modeling
entity representing an artefact of the application or the security domain.

11.4.2 Sectet-PL - Abstract Syntax

A Constraint is represented using Sectet-PL, a language defined according
to the EBNF grammar in Figure 11.11.

This grammar file is parsed by the transformation engine, and, upon in-
stantiation, creates an abstract syntax tree of the expressions. The mapping
expression (line 7) is optional. Nevertheless, more than object references could
be defined within one mapping expression (lines 9-10). A mapping variable
(line 11) could be a SUBJECT (representing the caller of the web service), a

Fig. 11.11. Abstract Syntax of Sectet-PL

www.manaraa.com

174 11 Extending Sectet: Advanced Security Policy Modeling

DELEGATOR (the delegator of the web service, cf. Section) or the DELEGATEE
(the entity, to whom rights are delegated). A PredicateExp (line 12) defines
the structure of the associated Sectet-PL constraint. It enforces the priority
rules for the logical operators by organizing them in a recursive way (lines
12-14). For a detailed specification of the Sectet-PL grammar, please refer
to [24].

11.5 Extending the Reference Architecture

The enforcement of Dynamic Constraints occurs through the same Reference
Architecture which was presented in Chapter 8. Nervertheless, three adapta-
tions were needed:

1. a specification of the general semantics of exectable policies for dynamic
access control policies and their elements based on the XACML 2.0 speci-
fication. In Chapter 8 XACML was used to express some kind of “security
compliance policies”.

2. an adaptation of the message protocol between the PEP and the PDP in
order to support queries on dynamic auhtorization checks based on roles
(XACML-request and -replies).

3. an extension of Sun’s XACML reference implementation of the PDP to
cope with a hierarchical form of XPath expressions which can refer to mul-
tiple data sources such as XML database, parameters from the XACML
Request etc (available at [184]).

Subsequently we briefly describe all three extensions, for a detailed account
on the implementation, please refer to [24].

11.5.1 Access Control, Delegation and Privacy Policies

We base the extensions for Access Control Policies on the Abstract Syntax of
XAML 2.0 as presented in Chapter 8 (cf. Figure 8.8 p. 132). For the imple-
mentation of Role Based Access Control, we fully rely on the XACML profile
for RBAC [100]. Figure 11.12 shows the conceptual extensions we added to the
XACML language in order to implement dynamic authorization conditions.

We subsequently briefly sketch the general semantics of the policy and
its elements in the context of the XACML 2.0 specification and will give a
short account on the specialized semantics of the corresponding policy and its
elements. For brevity, certain attributes, namespaces and policy elements are
omitted.

Role Policy Set

For every role in the Role Model, an XACML policy set called Role Policy
Set (RPS) is created. Figure 11.13 shows an example RPS for the role Char-
teredAccountant in simplified XACML syntax. The root element Policy

www.manaraa.com

11.5 Extending the Reference Architecture 175

Fig. 11.12. Abstract Syntax of Sectet-PL

Fig. 11.13. An Example Role Policy Set

Set contains two attributes. The PolicySetId points to the associated role,
the combining algorithm is set to ”deny-overrides” which is meant to logically
enforce the precedence of negative permissions over the positive permissions.

In our case we assume that a set of negative permissions was specified for
the role. They are referenced through NPPS:CharteredAccountant inside a
PolicySetIdReference element. Positive permissions are specified in an inner
policy through the same mechanism. Notice that the combining algorithm is
set to permit-overrides, requiring only one out of many PPPS to return a
positive result. In case none of the PPPS returns true, a general DenyPolicy
will be applicable.

The Target element block inside the RPS specifies the role. According to
the XACML profile for RBAC, the role name is specified with an Attribute-
Value element given inside the Subjects element block. This makes the RPS
applicable to any XACML Request targetting the role CharteredAccountant.

www.manaraa.com

176 11 Extending Sectet: Advanced Security Policy Modeling

The element SubjectAttributeDesignator searches for a particular at-
tribute which in our case is a role. This subject attribute is matched to an
attribute in the request context. The elements Resources and Actions are
irrelevant for RPS identification.

Positive and Negative Permissions Policy Set

The PPPS generated for CharteredAccountant in Figure 11.14 contains the
authorization constraints in the form of one or more Rules. The Target el-
ement contains the name of the Web service and of the operation to which
the rule applies. A Condition element additionally specifies an authorization
constraint. If the authorization constraint is met by the subject of the Web
service, it will be granted access. The PPPS references PPPS of roles that are
direct or indirect super classes.

Example Positive Permission Policy Set (Top) and Rules (Bottom)

www.manaraa.com

11.5 Extending the Reference Architecture 177

In our Role Model, CharteredAccountant inherits from the Junior Ac-
countant and TaxAdvisor, therefore the PPPS includes a reference to the
respective PPPS inside PolicySetIdReference (cf. Figure 11.14). The rules
nested inside the Policy element specify the conditions under which the Web
service operation will be accessible. The Condition element defines authoriza-
tion constrains in the form of XACML functions for X-Path, X-Query, Date,
Time etc.

Figure 11.14 shows the detailed context Definition for the PPPS. The
rule’s Target in a PPPS (or NPPS respectively) contains the name of the
Web service inside the Resource element block, which corresponds to Tax-
FileService and the particular operation in the Action element block which
in our case is getTaxFile.

The function SECTINO:function:1.0:custom-xpath-set-values evaluates
the ID of the role interweaving the values from the XACML Request (TA ID)
and from the business logic (via an internal web service e.g. accessing a
physician’s database). Basically, our algorithm transforms logical operators
in Sectet-PL to equivalent XACML logical operator functions, navigation
expressions to their equivalent X-Path or X-Query expressions. The map
function is transformed to an internal X-path expression on the XACML
Request, extracting the subjectId.

The NPPS for a role is only generated, if a negative constraint is specified
in the Access Model. A NPPS is generated according to the same rules that
apply to the PPPS with two exceptions: the inner policy specifies the rule
which denies access if applicable and an NPPS references no other policies,
which means that negative permissions are not inherited. Context Definition
and Authorization Constraint are specified in the same way as for PPPS.

Delegation Policies

Delegation Policies are executable artefacts based on XACML that configure
the security components in the Reference Architectures of partners participat-
ing in a delegation scenario. The XACML profile for rights delegation ([79])
extends the core specification with types for the Delegation Policies. Figure
11.15 shows these extensions.

The profile introduces a block of elements called Delegates inside the
Target block qualifying the policy as a delegation policy. The Delegate ele-
ment defines a a role, UserID or a complex object which is allowed to delegate
access rights specified by Subject, Resource and Action elements (e.g., a
CharteredAccountant is allowed to add a TaxFile).

The Delegate element refers to someone authorized by an administrative
policy to issue policies (e.g., a CharteredAccountant is allowed to delegate
the right of a CharteredAccountant to add a TaxFile).

A policy may contain a PolicyIssuer element describing the source of
an Access or a Delegation Policy. The absence of the element qualifies an

www.manaraa.com

178 11 Extending Sectet: Advanced Security Policy Modeling

Fig. 11.15. XACML Extensions for Delegation Policies

Access or a Delegation Policy as a trusted policy and therefore, it is con-
sidered trustworthy and its origin is not verified by the PDP. A policy is
considered unauthorized and discarded if he authority of the policy issuer
cannot be traced back to a trusted policy during the “chain check”, where
the authorization component at the target’s domain starts analyzing the last
policy in the chain.

The validation process is performed based on request-reply protocol using
administrative requests contain informationing about the policy issuers and
the access context or the situation defined as “A set of properties delineated
by the Attributes elements of an access request context.”

As specified in the profile, the Delegation Policy files can restrict delegation
by means of Condition and IndirectDelegatesCondition [79].

Restricted Delegation specified with Sectet-PL are transformed to Dele-
gation Role Policy Sets following the structure for Role Policy Sets as defined
for Access Policies in Section 11.5.1. The only difference is the role name
appearing in the Delegates element section (Figure 11.16).

Figure 11.17 shows an example Delegation Poisitve Permission Policy Set
for a CharteredAccountant. He is allowed to delegate the right of a Char-
teredAccountant to add a TaxFile to a JuniorAccountant working in the
same a workgroup.

www.manaraa.com

11.5 Extending the Reference Architecture 179

Fig. 11.16. An Example Delegation Role Policy Set

Fig. 11.17. An Example Delegation Positive Permission Policy Set

11.5.2 Protocol Extensions

XACML request and replies are based on the abstract syntax for request and
response as defined in Figures 8.14 and 8.16 in Chapter 8 (cf. pp. 138) with
a slight modification: in case of a successful authentication the PEP assigns

www.manaraa.com

180 11 Extending Sectet: Advanced Security Policy Modeling

Fig. 11.18. Modified Request for Access Decision (PEP to PDP)

a role to the requester according to the credentials provided and queries a
Policy Decision Point (PDP) to allow (or deny) access to web services. This
is why a role attribute is passed along with the request (lines 6-8 in Figure
11.18). The PDP bases the access decision on user attributes and informs his
PEP about the response.

Administrative Requests beteween the various Policy Decision Points in a
distributed delegation scenario are formed as specified in the XACML speci-
fication [79].

11.5.3 PDP Extensions

A Policy Decision Point refers to a software component which makes the Al-
low/Deny decisions as a last step in the authorization. In general, accessing a
data element or executing a service is controlled by the authorization process.
This is a multi step operation in which user attributes are examined to deter-
mine whether the rules allow this requestor (in this particular role) to access
the item or execute the service. The requestor identities available for authen-
tication are used by the application to request more information about the
requestor.

XACML offers a multiplicity of functions which can be used within the
policies for decision making. In addition to standard functions, it also provides
a possibility for the definition of new functions, data types, and combining

www.manaraa.com

11.5 Extending the Reference Architecture 181

algorithms. The XACML implementation by Sun Microsystems Inc. provides
these extension points (please, refer to [184]). We have extended the Sun’s
implementation in the following two dimensions.

Hierarchical XPath Expressions

The Sectet-PL expressions can refer to different data sources such as para-
meters of the (web) service, internal representations in the DocumentModel
etc. Because of this reason, the Sectet-PL expressions cannot be trans-
formed to ordinary XPath expressions. We have developed a hierarchical form
of XPath expressions which can refer to multiple data sources such as an XML
database, parameters from the XACML Request etc. Given the Sectet-PL
expressions, an hierarchical XPath expression is composed of several XPath
expressions that are nested with each other. The result of one expression is
used to evaluate the value of the other expression. Figure 11.19 shows a hi-
erarchical XPath expression (Box A) which is composed of the two X-Path
epressions (Box B). The expression refers to a requester who was assigned the
role CharterdAccountant and mandates Clients with a specific address.

These expressions are separated over a simple inverted comma. The value
of the internal XPath must be processed first in order to evaluate the result of
the outer XPath. The internal expression refers to the XACML Requests and
selects the subjectId of the caller of the service. The outside XPath expression
looks in the XML database for a TaxAdvisor and using the TA_ID (evaluated
using the internal XPath expression) locates the clients and correspondingly
delivers their addresses. The depth of the nesting is limited theoretically to
the size of the main memory.

Extended Functions

In order to interpret hierarchical XPath expressions, a list of functions is
added to the PDP. These functions take the hierarchical XPath expressions
as input, perform the intended function and output values of known types. In
the following, a list of these functions is given.

Fig. 11.19. Hierarchical X-Path Expressions in Sectet-PL

www.manaraa.com

182 11 Extending Sectet: Advanced Security Policy Modeling

• full-node-match: two strings in XACML Bags are examined for equality
and a boolean result is returned. The sequence of the individual elements
is not thereby of importance.

• custom-xpath-set-values: a bag of values can be returned based on the
hierarchical XPath expression.

• custom-xpath-one-and-only-one-int: a single integer value is returned
based on the hierarchical XPath expression

• custom-xpath-one-and-only-one-double: a single double value is returned
based on the hierarchical XPath expression

• custom-xpath-one-and-only-one: a single value is returned based on the
hierarchical XPath expression

11.6 Sectet-PL Transformations

Constraints specified in models with Sectet-PL are tranformed into XACML
policy files with the help of a Java-based tool. This transformation component
uses Antlr [3], a compiler program for the syntax analysis of the constraints.
After the syntax analysis, an Abstract Syntax Tree is generated which is
checked against the model information. Model information, captured in the
sub models of the Interface View – namely in the Role Model, the Interface
Model and the Document Model – is specified through references to XMI
files. The models are built using a UML based Modeling Tool and exported
via XMI files. The prototype implements a DOM parser to extract model
information from the XMI files. After successful syntax and semantic analysis,
generated XACML code can be viewed and can be transformed to XACML
policy files. Moreover, constraints can be saved for later usage. For details on
the Secetet-PL-Code Generator, please refer to [23].

11.7 Modeling Advanced Use Cases with Sectet-PL

In this Section we briefly describe approaches on how to handle a cou-
ple of advanced security scenarios by systematically extending the Sectet-
Framework. This Section does not describe full implementations but rather
addresses key issues of Model Driven Security Engineering in an industrial
context, many of them subject to current research and prototypical applica-
tion. Nevertheless, we sketch a viable path to proof-of-concept prototypes,
that may be useful, or at least relevant in an industrial setting.

11.7.1 Break-Glass Policy (BGP)

BGP is defined as an authorization scheme to allow access to a patient’s med-
ical record in case of emergency. An attending physician may need to bypass
routine access control restrictions to guarantee timely treatment without any

www.manaraa.com

11.7 Modeling Advanced Use Cases with Sectet-PL 183

delay due to administrative or technical complexities (e.g., [173, 116]). The
purpose of BGP is to allow emergency access to the system, in cases where
given rights are not sufficient to access the data. The associated constraint for-
malizes the BGP using external obligation operations (like e.g., audit). This
ensures that, in case of an emergency access, all actions of the requester are
audited. External functions (like e.g., audit) come in the form of an “obliga-
tion” and return a boolean values.

11.7.2 4-Eyes-Principle

The 4-Eyes-Principle is a form of Multiple Authorization, which requires two
users with a common interest to enter the system simultaneously. One of the
users accesses the data whereas the other user monitors the access in order to
ensure data confidentiality and integrity during access (see e.g., [202, 182]). In
healthcare scenarios, the 4-Eyes-Principle requires the patient to be present,
when a physician accesses her medical record. Physician’s access is logged
during the visit by some trusted Proxy Service. Enforcement of the 4-Eyes-
Principle is usually performed indirectly (as in e.g., [146]): a Tracing and
Auditing Authority is responsible for notifying and storing any communication
between the data owner and the requesting service into the logging database,
thereby guaranteeing Accountability of data access at anytime. Logging and
Auditing capabilities permit the patient to set her privacy policy based on
access history and identify potential abuse.

11.7.3 Usage Control (UC)

UC is a data-object specific authorization and access monitoring technique
concerned with permissions, restrictions, continuity and resumption of ser-
vices. It is implemented and logged at the user’s platform within her domain.
Data usage is controlled by the data service. For example, a requirement in
such a scenario could state that

“Access to a medical record is allowed for 5 times only
and should last for 48 hours, after its first access”.

11.7.4 Qualified Signature

The case of the Qualified Signature seems to be somewhat blurred. Integrity
and the Qualified Signature in principle rely on the same cryptographic prim-
itives (e.g., the hashing of values). This may suggest a specializaiton of the
Security Objective Integrity.

But there is a fundamental difference in the business semantics of both
requirements, and, in order to preserve this fundamendal difference at the
level of the language structure, we introduced it as a specialisation of the new
category of Domain Policy enforcing Availability. We motivate this with the
intuition that in delivering a Qualified Signature a natural person makes fully
qualified identity information available.

www.manaraa.com

184 11 Extending Sectet: Advanced Security Policy Modeling

Fig. 11.20. The Qualified Signature-Policy

Abstract Syntax

The abstract class DomainPolicy inherits from the class AdvancedSecurity-
Policy and enforces Availability (Figure 11.2 on p. 162).

A QualifiedSignature is associated to one or more Domain_Roles, which
are defined in the Role Model, referenced through the proxy-class Domain_Ro-
leRef, and a DocumentRef.

Concrete Syntax. Annotating the DocumentType part of a Message so
that it complies with the requirement of QualifiedSignature can occur in
one of two ways by setting the appropriate context and associating it to the
corresponding element in the respective model.

The constraint box stereotyped «DomainPolicy» can be associated to ei-
ther an element of the Document Model, like the MessageBody element in
Figure 11.21, or to the Action element in the GWfM specifying the name of
the Interface (Figure 11.22), of the Operation(s) (although not shown in
Figure 11.22) and of the Input and the Output Messages (also hidden).

In the first case, the context is set to the instance of the Message Ű
processedAS. It links a DocumentType to a Domain_Role, which is associ-
ated to a Partner_Role which represents an actor – a Partner_Role – in
the GWfM. The hierarchy of local roles is opaque to Partners in the Global
Workflow.

The CompositeSecurityAttribute QualifiedSignature indicates that
the Document has to be signed personally by holders of the roles Chartered-
Accountant and JuniorAccountant, two roles of the TaxAdvisor’s internal
role hierarchy.

www.manaraa.com

11.7 Modeling Advanced Use Cases with Sectet-PL 185

Qualified Signature - As Specified in the Document Model

Fig. 11.22. Qualified Signature - As Specified in the Global Workflow Model

In the second case (Figure 11.22), the constraint box is associated to
an Action in the GWfM. Specifically located in the Partition of the
Partner_Role, it provides the Interface, whose Operation is invoked by
the Partner_Role who has to provide the Qualified Signature. The constraint

www.manaraa.com

186 11 Extending Sectet: Advanced Security Policy Modeling

is attached to the Action ReceiveProcessedAS, which offers the Opera-
tion Ű whose name is not shown in the Action, but according to best
practice is named according to complementary sending Action of the Sender
(sendProcessedAS) that waiting for the message coming from the TaxAdvi-
sor. In both cases, the document is signed before leaving the domain bound-
aries (as opposed to performing a signature during the execution of a local
workflow). The gateway intercepts the document, and prompts the holders of
the respective roles to sign the document.

Model Dependencies

A DomainPolicy is assigned to a DocumentType or one or more of its parts
– a DataType. This corresponds to Message-information, referred to with the
help of a proxy-class DocumentRef from the security meta-model. It is meant
to be signed by a natural person holding a Domain_Role or a Partner_Role,
as usual through reference by a proxy-class.

Enforcing the Qualified Signature-Policy

The following scenario describes how the Qualified Signature-Policy is enforced
at the origin (this is actually where the Qualified Signature as specified in the
Policy should be applied).

For this scenario, we assume that the document created in the domain of
the TaxAdvisor. As modeled in the policy it should be signed by two officials
before it can leave the domain. The following procedure will be triggered in
the TaxAdvisor’s domain:

1. An employee JuniorAccountant creates a document to which the policy
of a Qualified Signature applies.

2. The employee post the document to its final destination (e.g., Municipa-
lity).

3. The Security Gateway intercepts the document: all document are checked
at the domain’s boundaries whether they comply to requirements of Se-
curity Policies.

4. The document is forwarded to one or more officials in charge (e.g., the
CharteredAccountant and the JuniorAccountant in case he did not sign
the document at creation) who have the right to sign the document.

5. In our case the CharteredAccountant is prompted for a signature by a
special application – a “Secure Viewer”.

6. The CharteredAccountant signs the document by plugging his electronic
ID card into the card reader which is connected to the his PC.

7. The PEP sends the document to the final destination.
8. The PEP at the destination’s endpoint checks the document for compli-

ance to the Security Policy which was aggreed upon beforehand – in this
case the signature of the CharteredAccountant. In case of non compliance
the document is discarded and a notification sent back to the originator.

www.manaraa.com

Part III

A Case Study from Healthcare

www.manaraa.com

12

health@net – A Case Study from Healthcare

Co-authored by
Thomas Schabetsberger1, Richard Mair1, Florian Wozak1,

and
Basel Katt2, Frank Innerhofer-Oberperfler2, Markus Mitterer2

This Chapter is co-authored by Thomas Schabetsberger, Richard Mair and
Florian Wozak from our project partner CEMIT as well as Basel Katt, Frank
Innerhofer-Oberperfler, and Markus Mitterer – all three are colleagues from
our research group Quality Engineering at the University of Innsbruck.

Thomas Schabetsberger, Richard Mair, and Florian Wozak – the leading
architects of the health@net project – contributed material to Sections 12.1
and 12.2. Frank Innerhofer-Oberperfler and Markus Mitterer performed the
Security Analysis (Section 12.3), whereas Basel Katt elaborated the Security
Concept for Phase 2a and 2b (Section 12.5).

We organized this Chapter as follows: we present some background in-
formation on electronic healthcare in Section 12.1. We introduce the project
health@net in Section 12.2. The core of the present Chapter is the systematic
integration of complex security considerations based on the ProSecO approach
and their realization with the Sectet-framework: in Section 12.3 we present
results of a Security Analysis based on the ProSecO approach. This is the
starting point for the health@net Security Concept which is elaborated in
Section 12.4. The integration at the conceptual and the implementation level
into the Sectet-framework is presented in Section 12.5.

1 Healt@net (CEMIT), Austria {thomas.schabetsberger, richard.mair,

florian.wozak} @healthatnet.at
2 University of Innsbruck, Austria, {basel.katt, frank.innerhofer-ober

perfler, markus.mitterer} @uibk.ac.at

www.manaraa.com

190 12 health@net

12.1 Background

12.1.1 The Electronic Healthcare Record

The Electronic Health Record (EHR) stands for a concept aiming at the digi-
tal integration of healthcare information currently scattered over a myriad of
traditional paper-based archives, databases holding health records, and clini-
cal information systems distributed across multiple security domains of many
stakeholders of the healthcare industry.

As a matter of fact, the status-quo comes at great costs to national
economies, paired with an unsatisfactory level of service quality, possibly even
leading to fatal errors resulting in erroneous treatment or wrong medication
(e.g., [127, 155, 105]). Trying to systematically resolve these system-inherent
weaknesses, a growing number of countries are working towards the realization
of national EHR systems (e.g., [105, 85]). By now, leveraging the popularity
of standards related to web services – based on the paradigm on Services Ori-
ented Architectures – these initiatives have set the implementation of powerful
infrastructures supporting inter-operability for trans-organizational health-
care services (e.g., [84]) at the top of their agenda. The EHR specifically refers
to a consolidated, time and location independent electronic representation of
a patient’s healthcare related information.

Theoretically, the central promise of the EHR is the ability of each pa-
tient to retain exclusive control of his records. This means that he should be
deciding who is allowed to view, store and/or change his records. However,
for all practical purposes, the EHR will not replace every single patient file
or record practioners may be keeping to track the treatment of their patients.
For the time being EHR will only include so-called “discharge notes”, medical
statements issued after completion of a treatment.

The EHR is supposed to significantly boost cost-efficiency of healthcare
systems [72]. In Austria, the introduction of the ecard system (Österreichische
Gesundheits-Chipcard) for general practitioners provided the technical prereq-
uisites for a nation-wide integration of healthcare providers into an electronic
newtork (e.g., [208] and [198]).

12.1.2 National E-Health Initiatives

Currently, several national projects worldwide are engaged in similar endeav-
ours at a very large scale most notably the Regional Health Information Orga-
nizations (RHIO) currently being formed in the USA, the British connecting
for health initiative, and the Danish medcom and sundhed.dk projects. The
IHE industry initiative does appreciate this trend and has put great effort in
the formulation of integration profiles to standardize cross enterprise health
data exchange like the XDS (cross enterprise document sharing) and XDS-I
(cross enterprise image sharing) profiles [120].

www.manaraa.com

12.1 Background 191

In 2005, the Austrian Ministry of Health started the E-Health Initiative
[4], a voluntary stakeholder group with a wide range of representatives from
healthcare institutions, academia and industry, which delivered a recommen-
dation for a national e-Health strategy in December 2005, which is currently
in a consultation process. Key element of the recommendation is the estab-
lishment of a national electronic health record for all citizens, organized as
a distributed system where all data is stored at the institutions where it is
produced, but with the possibility for other institutions to access relevant in-
formation in a standardized way. The sharing of information is to be achieved
through metadata indices (comparable to the IHE registry), but also here,
the federation of distributed indices (residing at the main care providers) is a
central design criterion.

12.1.3 Technical Standards for Healthcare

“Integrating the Healthcare Enterprise” (IHE) [4] is an initiative involving
stakeholders of the healthcare industry aiming at the improvement of informa-
tion exchange between information systems in various domains of the health-
care industry. IHE chiefly coordinates efforts pushing further development of
established standards like DICOM and HL7, to address specific clinical needs
in support of optimal patient care.

IHE drafted a common framework defining how to support basic interoper-
ability needed for local and regional health information networks. Integration
profiles define the detailed specifications on how these standards can be imple-
mented for a specific medical domain. IHE developed a basic set of integration
profiles aiming at:

1. supporting Cross-Enterprise Document Sharing (XDS) for document con-
tent interoperability. The technical framework for the IT infrastructure
[191] comprises nine profiles. One of them – XDS – describes the regis-
tration, the distribution and the access to electronic healthcare data over
healthcare related institutions [192]. XDS stands for a specification facil-
itating the exchange of documents between various medical institutions.

2. providing a security framework enforcing confidentiality, authenticity and
integrity of patient care data,

3. facilitating cross-domain patient identification management to ensure con-
sistent patient information and effective searches for EHRs.

IHE implementations of these standards are supported, documented, and
tested by industry partners.

12.1.4 The Austrian Data Privacy Law

To reach compliance with the Austrian data privacy law, all trans-institutional
access to health data has to be mandated by the patient in the form of an
informed consent.

www.manaraa.com

192 12 health@net

Fig. 12.1. 4-step-model

Therefore, a working group of Austrian data privacy experts [198] designed
a conceptual model, the so called “4-step model for the request and the trans-
mission of patient data” (Figure 12.1).

The model covers implementation aspects related to data privacy laws, as
well as safety and security regulations. The model is set up and formalized in
the form of a contract, which can be joined by healthcare providers.

Based on this generic model, participating institutions agree to access data
from other institutions according to a specific 4-step process:

1. first searching for institutions that know about the patient,
2. secondly by searching for case information at specified institutions in ac-

cordance with the patient will,
3. thirdly accessing selected discharge summaries on the patient,
4. and finally retrieving parts of the patient record (like reports, lab results,

or image data).

With this patient-consent centered framework, trans-institutional access
to data is made possible even without amendments to the data privacy legis-
lation. In accordance with these key elements for a national electronic health
record, the health@net project team started with the design of a distributed
IT architecture.

12.2 health@net

12.2.1 Project Mission

The efforts to implement a centralized management system for healthcare
records in so-called “Independent Health Record Banks” [176] failed due to
the overwhelming data volume and unbearable costs. Assimilating these in-
sights, the project health@net set out to champion the concept of a “Distrib-
uted Electronic Healthcare Record”: in opposition to all former approaches,
healthcare data should not be migrated centrally onto servers of a single data
processing center, but remain on the information systems of its “producers” –
the various stakeholders of the healthcare industry.

www.manaraa.com

12.2 health@net 193

Rather, patient records, distributed across various domains, should be
made accessible to authorized requesters in the form of a single consolidated
but “virtual” healthrecord. Practically stated, the technical goal of the project
health@net is the realization of an information system providing a logically
consolidated view on all distributed healthcare records of a patient. The sys-
tem targets the stakeholders of the healthcare industry.

12.2.2 Organizational Setting

health@net, is set up as a research project involving academic and industrial
partners. The project is mainly carried out by the following key-partners:

1. ITH icoserve GmbH, as the main industrial partner with extensive expe-
rience and know how in the area of Clinical Information Systems,

2. the Private Universitat f¨ ur Gesundheitswissenschaften, Medizinische In-ff¨
formatik und Technik (UMIT) as the key academic player,

3. and the Center of Excellence for Medicine and IT GmbH (CEMIT), a joint
venture involving public agencies and the UMIT, managing the consortium
and providing marketing know how.

4. Leopold-Franzens-Universitat Innsbruck, with its research group “Quality¨
Engineering” as a consultant on various matters of software and security
engineering

The branch office of health@net is located with the CEMIT Competence
Center.

Various regional as well as national stakeholders in healthcare as well as
academic institution addtionally contribute to health@net as cooperation
partners. Among them:

Users of clinical information systems and software

1. Tiroler Landeskrankenanstalten GmbH (Tilak), the management holding
for the six largest hospitals in Tirol, with a budget of over 430 Million
Euros,

2. Bezirkskrankenhaus Reutte, one of the major public hospitals in Tyrol,
3. Ärztekammer fur Tirol, the Tyrolean chamber representing medical pro-ff¨

fessionals,
4. Medizinische Universitat Innsbruck, the biggest medical university in¨

western Austria.

Research Institutions

1. Technische Universitat Graz, as a consultant on various engineering topics¨

Developers of clinical information systems and software

1. ACP IT Solutions, a major provider of IT-solutions with an annual trun-
over of over 280 million Euros.

www.manaraa.com

194 12 health@net

2. Professional Clinical Software GmbH, a vendor of clinical software, part
of the TBS-Group, the leading european vendor of medical technology.

Standardization initiatives and bodies

1. E-health Intitiative Österreich, an Austrian consortium consisting of
approx. 100 persons aiming at the elabortaion of a national startegy
for the application of Information- and Communication Technologies in
healthcare.

2. Arge ELGA, a working group set up by the Austrian Ministry for Heath,
Familiy and Youth in charge of steering the planning and the implementa-
tion process of the Electronic Health Record (ELGA – German acronym
for EHR, cf. Section 12.1.1).

Social Insurance Agencies

1. Sozialversicherungs-Chipkarten GmbH, a subsidiary of the Federation of
Carriers of Social Insurance, aiming at the implementation and the man-
agement of a national information system supporting eletronic processes
and transactions for servcies and activities related to social insurance.

The research group Quality Engineering (QE) of the Institute of Computer
Science (University of Innsbruck, Prof. Dr. Ruth Breu) and the Institute for
Health Information Systems (IIG) (University for Health Sciences, Medical
Informatics and Technology (UMIT), Prof. Dr. Elske Ammenwerth), jointly
assume leadership in matters of security in health@net.

12.2.3 Architectural Concept

In the project’s inception phase it became obvious, that a full support of co-
operative healthcare needs substantially more than a mere directed electronic
transfer of textual information. Although web portals may offer support for
image and multimedia information, the activity of collecting information on a
patient becomes very inconvenient: healthcare institutions intending to coop-
erate quite certainly may all have their own web portal (and most probably
with different look and feel). The big challenge that emerged lay in the need
of an intuitive but systematic access to relevant health information from other
institutions. The concept of a “Shared Electronic Health Record” seemed to
be the way to go for.

Design Criteria

In accordance with these key elements for a national electronic health record,
the health@net project team started with the design of a distributed IT ar-
chitecture, based on principles of GRID technology [212] and in coordination
with the Austrian GRID effort. The following design criteria were identified
as key to success:

www.manaraa.com

12.2 health@net 195

1. a distributed storage of health data,
2. a high level of security against misuse and attacks through reliance on

authenticated web services,
3. an absolute respect of patient consent and features to grant and retract

access permissions to documents by the patient himself.

All functionalities are conceived as Web services in a Service Oriented
Architecture (SOA).

Target Architecture

Based on these requirements and following the architecural guidelines of IHE-
XDS health@net elaborated an architecural concept supporting the exchange
of information across institutional boundaries. A distributed system of Web
services supports decentralized management of records (leaving data at the lo-
cation of production). Health information is made accessible via a distributed
chain of indices.

Figure 12.2 shows the components of the core system architecture [99]:

1. The Access Node (AN) acts as a Gateway to the system from the outside.
Queries to PLI, DMDI are only generated by AN and have to be signed.
Clients are checked, and permissions enforced.

2. The Document Clearing (DC) processes all documents from the internal
system of an institution before making them available in the system.

3. The Document Registry (DR) is the physical or virtual repository for
medical documents. It delivers documents only if the request is signed by
trusted DMDI.

Fig. 12.2. Distributed Core Architecture

www.manaraa.com

196 12 health@net

4. The Document Meta Data Index (DMDI) contains document meta-data
and links to the Document Repository (DR). It holds document based
permissions, authorizes and signs queries about specific documents (the
mDMDI acts as master and the sMDMDI as the slave DMDI).

5. The Global Index (GI) registers DMDI servers, which have specific infor-
mation about a patient (MPID).

6. The Patient Permission Enforcer(PPE) holds and enforces global permis-
sions for every patient. Permissions can be individually overridden at the
document level.

7. The Patient Lockup (PL) holds all demographic data of patients and maps
them to the Master Patient Identifier (MPID). It is connected to the PPE.

8. The Patient Lockup Index (PLI) processes queries for patients from the
AN, and forwards them to the PL before communicating results back.
The PL service is not queried directly due to security considerations. Only
service which requires no patient consent are granted access.

9. The Master Patient ID(MPID) is a unique patient ID within the
health@net grid. It identifies individual patients and merges together
various national and regional identifiers. It is intended only for inter-
nal use.

Depending on their functionality the Web services are logically allocated
to different abstract components. Figure 12.3 illustrates the aggregation of
services into logical components of the core architecture.

Fig. 12.3. Distribution of Web services on Nodes of IHE-XDS Architecture

www.manaraa.com

12.2 health@net 197

Basic Use Cases

Figure 12.2 also shows the two basic use cases that were implemented in
Phase 1:

Retrieving a Document

The uses case for document retrieval (shown in dashed lines in Figure 12.2)
triggers the following procedure: the AN, single point of entry into the
health@net network, first receives a request from the web portal (1). After
authenticating the web portal’s message, it queries the MPID of the patient
by sending an encrypted request to the PLI (2). The PLI will check the MPID
using the PI. Upon getting the patient’s ID the AN asks the registry service
(GI) about the locations that maintain this specific patient’s record (3). The
GI checks authentication of the request and sends back the list of DMDI and
PPE locations. At this stage the consent of the patient is checked by send-
ing a request to the PPE (Patient Permission Enforcer) (4). This component
stores global permissions of patients. Using rules stored in the PPE, it en-
sures that the request is granted access to the record of this specific patient.
Consequently, the PPE sends back an encrypted response to the AN using
the latter’s private key. The AN forwards this response to the list of DMDI(s)
received by the GI (5). The DMDI, which holds document’s meta-data, au-
thenticates the request and ensures that it is sent by the PPE. After authenti-
cating the response, the DMDI sends all locations of repositories. Finally the
AN requests the document from the list of received repositories (6).

Adding a Document

The uses case for adding a document (shown in solid lines in Figure 12.2) is
executed as follows: a document is initially added by entering the web portal.
The request first is re-directed to the AN (1) in order to get the Patient’s
MPID (1a). After reception of the MPID, a request to add a new document
is sent to the DC (Document Clearing) of the system. Document Clearing
stores the document in the DR (3) and adds the corresponding meta-data in
the DMDI(s) (4). GI(s) are updated by the DMDI about the new document
and its corresponding DMDI(s)(5).

Anticipating security considerations covered in the next Section, it is worth
mentioning that in this early stage of the design, each Web service was already
considered as a security domain of its own. Nevertheless, the communication
between service components was only secured in an ad-hoc manner at a very
low technical level through Secure Sockets Layer (SSL).

Current Project State

By the end of 2007, a first software release intended for pilot installations
was completed. This early implementation focused on the transmission of

www.manaraa.com

198 12 health@net

textual information. The original IHE XDS framework had to be extended
by additional components in order to cater for the distributed and federated
design – functionality that was on the IHE roadmap for 2007. The verification
of IHE compliance was reached at the 2007 IHE Europe connect-a-thon.

Current work deals with scalability on the one hand, preparing the back-
bone architecture to cope with large volume data sets from medical imaging.
Built on a planned high-bandwidth network between regional health institu-
tions, transparent access to relevant health data across health organizations
will become a reality. On the other hand, security issues will come to the fore.
During implementation of the first release, security issues were only dealt with
at a very basic level. Basic transport-layer encryption mechanisms were used
to enforce data confidentiality and integrity from one node to the next. The
system’s security architecture basically relied on Role Based Access Control
for the restriction of access to data by (Web) services. The integration of
application-level user roles into the security architecture is part of the current
release (cf. Section 12.4).

Security considerations in healthcare networks have to cope with many
complex issues that cannot be dealt with such primitive security controls. For
the sake of examples, one can think of topics such usage control on remote
clients (e.g. a document is accessible for 5 days on client only), endpoint secu-
rity (e.g., attacks on client through malicious software), as well as advanced
application level security requirements (e.g., 4-eyes-principle).

12.3 health@net – Security Analysis

12.3.1 Introduction

In this chapter we will give an overview and a practical example on how
to identify security objectives and refine security requirements for a Service
Oriented Architecture based on the ProSecO method presented in Chapter 6.

Subsequently we will not focus on the entire security management process
but just on the two steps of security objective identification and security
requirements engineering. In Section 12.3.2 we will shortly introduce the scope
of analysis and the context of our case study. Section 12.3.3 explains the
identification of security objectives. Section 12.3.4 focuses on the engineering
of detailed security requirements. Finally we give an small conclusion.

12.3.2 Functional System View

Scope of Analysis

The starting point for the ProSecO security analysis process is a basic
Global Functional Model that depicts important business and technical ob-
jects and the partners involved in the Service Oriented Architecture. The

www.manaraa.com

12.3 health@net – Security Analysis 199

Global Functional Model provides the frame to identify dependencies among
the various processes, information objects and services. The analysis of secu-
rity concepts like Security Objectives and Security Requirements is executed
on the basis of these modeled elements and dependencies.

The health@net network allows several partners and institutions (e.g. hos-
pitals, physicians, patients) to share electronic patient records. Security is of
uttermost importance for the acceptance of such a network and therefore it
provides a good case for our example.

In practice in such a scenario we have a high number of heterogeneous
partners in the network. These partners have differing expectations on security
and have also different levels of maturity in their security. What we will explain
in this chapter is how the security objectives of all partner can be elaborated
and how they are concretised.

Global Functional Model

To demonstrate the security requirements engineering process we use only
a reduced schematic example of the health care network (see Figure 12.4).
This condensed model consists of a Health Care institution, which may for
example be a hospital or a general practitioner. This institution is involved
in the business processes Read Health Record and Write Health Record, that
both access the information object Health Record. The underlying services
that provide the functionality are Retrieve Health Record and Commit Health
Record. Each access to the health care network requires authorisation, which
is provided by the Authorisation Engine service and in case of permission the
medical document is delivered by or stored in the Document Repository.

Fig. 12.4. Schematic Global Functional Model

www.manaraa.com

200 12 health@net

12.3.3 Identification of Security Objectives

General Approach

The distinction between high level security objectives and more detailed and
fine-grained security requirements is important to be able to focus and priori-
tise the analysis from an overall perspective. The overall process of security
objectives definition is inspired by work on Goal-oriented requirements engi-
neering [199].

The identification of security objectives is an important step in the secu-
rity analysis process. Security Objectives should be defined in general from a
business point of view. They serve the purpose to provide clear and under-
standable communication of the main security goals. In our point of view it is
important to derive these security objectives not from a technical perspective
(i.e. IT perspective) but to define the goals from a professional perspective of
the involved partners or stakeholders.

Sources for Security Objectives may be manifold and include internal cor-
porate policies, contractual and/or legal obligations, they may stem from the
overall security strategy of a partner or the need to classify and protect infor-
mation.

The process of identification of Security Objectives is therefore not
straightforward but is composed of different activities. It may on one hand
be necessary to do an analysis of the legal regulations and constraints to
achieve compliance. On the other hand the IT department could bring over-
all objectives to the table that might stem from frameworks like COBIT
[123] or ITIL [149]. It could furthermore be necessary to conduct interviews
and discussions with stakeholders that might have serious privacy and/or
information protection considerations.

A variety of methods can provide guidance and tools to identify the knowl-
edge and the security concerns of the various stakeholders. Peltier’s FRAP
methodology [161] is identifying stakeholders and puts information assets un-
der their ownership. This enables the utilisation of knowledge from users
that are working every day with the analysed components. The OCTAVE
approach [27] describes various techniques like brainstorming and interview
techniques to identify areas of concern and their impact on the organisation.

Case Study

Gathering all Security Objectives in the health care domain is a challenging
task, since requirements of all stakeholders have to be considered. Extraordi-
nary significant regulations have been stated in text of a law, but beside those
there exist several additional sources which must be traced. The following
sources were used for this purpose:

• Legal Requirements for the Exchange of Patient Data in Austria
• International Standards

www.manaraa.com

12.3 health@net – Security Analysis 201

• Functional Requirements of the involved stakeholders
• System Requirements

Based on this pool a further filtering for security related objectives has
been performed. The resulting amount of objectives do sometimes overlap
with others in their meaning and for that reasons is makes sense to group them
together. Such general security objective groups are sufficiently described in
the literature by several professionals and we stick here to the work of Donald
G. Firesmith [88]. Firesmith proposed 12 mayor Security Objectives, which
are listed in the following (see Table 12.1):

Type of Security Objective

Identification Requirements
Authentication Requirements
Authorisation Requirements
Immunity Requirements
Integrity Requirements
Intrusion Detection Requirements
Non-repudiation Requirements
Privacy Requirements
Security Auditing Requirements
Survivability Requirements
Physical Protection Requirements
System Maintenance Security Requirements
Availability Requirement (supplementary added)

Table 12.1. Security Objectives (adapted from [88])

As this list does not contain explicitly the objective “Availability” what
is a quality issue to Firesmith but fundamental in the health care domain,
this objective was supplementarily added. To summarise the present results,
we have a schema for grouping the Security Objectives and a list of sources
which refer to the requirements of the involved stakeholders. Based on this
knowledge a Security Objective Matrix is created that indicates which source
has any impact to a concrete Security Objective group. This information is
not always observable easily and may be obtained by methods like literature
analysis, brainstorming and interviews with domain experts.

The resulting matrix consists of crosses, where each indicates that a specific
source has some bearing to this group of Security Objective (see Figure 12.5).

At the end sources with overlapping content can be consolidated and de-
scribed in the context of the health care domain. With this approach most
of the Security Objectives proposed by Firesmith were obtained, except two
of them. Non of the sources are affecting the Security Objective ‘Intrusion
Detection’ and ’System Maintenance Security’, so these are considered to be
suggestions for an extended security control. When examining the security

www.manaraa.com

202 12 health@net

Fig. 12.5. Security Objective Matrix

meta-model it can be realized that each Security Objective is related to a
Model Element. This object represents any type of class from the Global Func-
tional Model (see Figure 12.4) and demonstrates which part of the enterprise
is involved in this Security Objective.

For further explanations we will concentrate on two specific Security
Objectives

• Authorisation of parties (SO-1) All involved individuals and comput-
ers obtain according to their physical role permissions and privileges. Care
must be taken that each party can only perform functionality appropriate
to their real task.

• Integrity of the health record (SO-2) Users of the health care network
must be sure that information is properly processed and stored.

Our first Security Objective SO-1 can be attached to the Model Element
Health Care Institution, as it is an organisational task to ensure authorisa-
tion of all involved roles and systems. The second Security Objective SO-2
is related to the Health Record, as integrity always deals with information.
These Security Objectives do not just affect the Model Elements to which
they are attached but they propagate to dependent elements. furthermore
their intention is inherited. When examining our Global Functional Model
(see Figure 12.4) we can expand the obtained Security Objectives to other
Model Elements following the dependency graph top down. For our example
this means that SO-1 is affecting all other elements and SO-2 all services, as
the former is the root element and the latter the top element of all services.

12.3.4 Engineering of Security Requirements

General Approach

Starting from the initially identified Security Objectives more detailed and
elaborated Security Requirements have to be defined. The scope of analysis

www.manaraa.com

12.3 health@net – Security Analysis 203

for defining Security Requirements is defined by the dependencies of the model
elements, i.e. the dependency graph.

Security requirements elicitation in general is a non-trivial task that im-
poses a lot of responsibility on the security analyst. It is no straightforward
process that leads to unambiguous requirements, but instead it is a process
driven by experience and a very good understanding of security related issues
by the analyst.

There are a variety of methods that can help to identify the necessary re-
quirements and derive them in a top-down or bottom-up approach. A bottom-
up approach might be based on the checklists and threat catalogues that
are delivered by national and international standards like British Standard
7799-3:2006 [60], NIST 800-30 [181], France’s EBIOS [75], Germany’s Base-
line Protection Manual[61] or Spanish Administrations MAGERIT [145].

Based on the potential threats that might realize in our scope of analysis we
could formulate Security Requirements that describe the prevention of those
threats. In this way we follow an approach to define security requirements by
considering misuse cases or attacker goals [179, 73, 140].

Examples for security requirements based on such a negative statement
might be: Prevent man-in-the-middle attacks on this communication channel
or Prevent automatic password guessing by delayed timeouts after 3 attempted
logins. It is clear, that such an approach leads to rather technical require-
ments that may focus on the communication or even cryptographic level of
abstraction [98, 97].

On the other hand we follow a top down approach refining security re-
quirements of higher levels into security requirements in the context of model
elements of lower levels. For example a Security Objective“Ensure Availability
of Core Services” might be refined to the more detailed requirements Ensure
99,99 % uptime or Maximum tolerable service failure must not exceed 4 hrs.

Techniques that are employed in the definition of more detailed security
requirements are interview-techniques that are proposed by OCTAVE [27] or
by standards like ISO 27001 [121]. The relevant stakeholders from the business
lines know best what can go wrong if the underlying IT infrastructure fails,
while the IT specialists have the necessary understanding what could fail
technically. Both perspectives are required to implement a business oriented
security strategy.

Example Case

In our case the definition of security requirements is tailored toward service
oriented architectures in the sense, that our scope of analysis on a global level
is the realization of a service oriented architecture with the business processes
and information objects as the main concepts of analysis. Since our enterprise
model is only a static model of the dependencies of the various elements,
we use sequence diagrams to analyse the possible paths of information flow
throughout the SOA (see Figure 12.6).

www.manaraa.com

204 12 health@net

Fig. 12.6. Schematic Sequence Diagram

That way we are able to identify potential weak points in the communi-
cation between services and potential attack scenarios. We use such scenarios
to define security requirements that are based on concrete threats.

What is important in the security analysis process is that every security
requirement must be traceable to its original security objective. This allows a
priorisation and analysis of risks from a business perspective by considering
potential business impacts.

The exemplary elaboration of security requirements is based on the objec-
tive SO-1. The following requirements were created in a bottom-up approach
by examining the Germany’s Baseline Protection Manual [61]. In this way the
Authorisation objective can be split up into the following requirements.

• Permissions must be assigned correctly and promptly (SR-1): The alloca-
tion of permissions must be done with extraordinary diligence, that users
actually possess only permissions which are necessary to fulfil their tasks.
In case of a role modification of an employee the permissions must be
changed promptly.

• Avoid man-in-the-middle attacks (SR-2): Any authorised communication
channel cannot be taken over by another computer or individual.

• On-time authorisation (SR-3): Any authorisation attempt must be
processed within a defined time frame to allow fluent communication.

12.3.5 Conclusion

The process of identifying and defining security objectives and requirements
is a non-trivial task that imposes a lot of responsibility on the shoulders of the
security analyst. It is important to solve possibly conflicting requirements (e.g.
availability vs. confidentiality) to have very good communication skills and a

www.manaraa.com

12.4 health@net – Security Concept 205

Fig. 12.7. Example Security Requirements

broad understanding and know-how about the organisational and technical
architecture of an organisation.

The approaches explained and mentioned in this chapter can only give
a guidance but still require a lot of experience and a variety of social and
technical skills from the analyst. Also the checklists can give a hint as to
what security requirements might be considered but every Service Oriented
Architecture will have its own special objectives that stem from the various
interests of the cooperating institutions, departments or partners.

12.4 health@net – Security Concept

Based on the security analysis presented in the previous Section, the
health@net team elaborated a security concept based on Role Based Ac-
cess Control. Compliance with IHE profiles was a prime objective: e.g.,
authentication and authorization are performed in strict conformance to the
IHE-ATNA profile [191] (i.e., based on certificates and bi-directional). Secu-
rity concerns were integrated according to a security concept split into three
phases.

12.4.1 Phase 1: Service-level Security

In Phase 1 authorization is enforced based on roles, but these roles are ex-
clusively assigned to services. Enforcement components in the target architec-
ture simply make sure that services can only be invoked by a registered and
authenticated health@net service (or component) node according to specific
rules. For example, a Document Source may be allowed to invoke services of

www.manaraa.com

206 12 health@net

a Document Repository component but is denied access to services of a Docu-
ment Consumer. Access control is basically enforced according to the following
procedure:

1. Authentication. A node requesting a service is authenticated through a
“Service Certificate” (e.g., X509 v3). The certificate is sent along with the
request. It specifies the service’s role in an attribute, and is issued by a
trusted third party.

2. Authorization. After successful authentication, access rights are checked
based on permissions assigned to the role (permission-role assignment),
which in turn was assigned to the requesting subject (subject-role assig-
ment) – The subject being a typical health@net component service (e.g.,
documentQuery of Document Repository).

3. Security Compliance. Every incoming message has to comply to spe-
cific security requirements as defined in the security policy model (i.e.,
signed and encrypted message elements). Enforcement is realized based on
machine-readable policies stored in repositories. These policies are gener-
ated from the specific policy model and configure enforcement components
to perform the respectice checks.

12.4.2 Phase 2a: Static, Process-level Security

Phase 2 provides for the extension of access control to process-level user roles:
after having granted access to the requesting service node, the “application-
level” role of the user (e.g., physician, nurse, pharmacist etc.) that originated
the access request is checked. Due to the large variety of different documents
that together represent the virtual healthcare record of a patient, and the va-
riety of associated access rights, it is necessary to support very fine-granular
access rules. For example, a pharmacist may only be able to read the prescrip-
tion but not a doctor’s discharge notes.

As in phase 1, access control is based on the RBAC model. Authentication
is realized with the help of the e-card which is available to all citizens in
Austria. After authentication, the user will be assigned a certificate including
personal data, information about his person, his profession and his rights. On
access, this certificate will be checked against rules stored in a local repository
for the corresponding requested component or service.

12.4.3 Phase 2b: Dynamic, Process-level Security

In phase 2b, access control is enhanced so to integrate checks on dynamic,
context-dependent parameters. Access rights defined in Security Policies may
depend on parameters that have to be checked at run-time:

• Location dependent access: e.g., a pharmacist may be allowed to read
a prescription only within the perimeter of the pharmacy.

www.manaraa.com

12.5 Realizing Security with the Sectet-Framework 207

• Time dependent access: e.g., a patient may want to define a timeframe
for a physician to access his records, whereas there is be no such tme
constraints for the family doctor to access his record.

• Contextual information: e.g., a right to read a diagnosis may be granted
only in presence of the patient in question.

12.5 Realizing Security with the Sectet-Framework

As already shown through the running example from e-government, Sectet
is a framework for Model Driven Security. In the example, the framework
supported the design, the implementation and the management of secure inter-
organizational workflows in a peer-to-peer environment (i.e. without central
control). The technical architecture was based on the paradigm of Service
Oriented Architectures.

Due to its genericity, the Sectet-Framework covers a large set of
component-based applications from a broad variety of domains such as
e-government, e-health, e-education etc. Case studies from healthcare and
e-government provided the opportunity to apply the framework in real life
scenarios [25, 106, 57, 108].

In this Section, we discuss extensions and adaptations to the Sectet-
Domain Architecture necessary to cater for the integration of security concerns
into the health@net scenario. Security requirements are based on the findings
of the security analysis (Section 12.3) and operationalize the security concept
(Section 12.4).

12.5.1 Conceptual Background

We base our conceptual understanding of the health@net problem context on
the definition of three related Domains: the Problem Domain, the Security
Domain and the Application Domain. This structure should help us identify
the differences to the running example used throughout this book and to adapt
and extend the Sectet-framework accordingly.

Problem Domain

The architectural structure of the application context basically defines
the Problem Domain. An e-governement application differs from a typical
e-tendering, e-commerce or e-healthcare scenario by exhibiting a set of spe-
cific architecural patterns. For example, we noticed that most scenarios in
e-government were defined in terms of documents flowing from one security-
domain to the next without central co-ordination. The original Sectet-
framework was designed to mainly support scenarios from e-government. The
framework accordingly supported solutions for a Problem Domain defined as
“security-critical inter-organizational workflows”.

www.manaraa.com

208 12 health@net

In healthcare, specifically in IHE-based scenarios, the problem revolves
more around modeling distributed patient records and related security issues.
This requires some adaptation of the original Sectet-Framework. This be-
comes evident when raising the level of model abstraction towards business
level semantics. However, as we will see subsequently the problem setting in
phase 1a (securing the service-level) is very similar to the one encountered
when we considered inter-organizational workflows.

In health@net, the Problem Domain is defined as the area of scenarios
providing access to privacy-sensitive, distributed records. In this context, the
notion of Privacy in the definition points to the requirement that patients must
retain legal ownership and control over their records, even when “delivered”
onto untrusted hosts. The specification of so-called Usage Control Policies
requires the integration of a Security Model going beyond the capabilities
of the RBAC model. This is accounted for by the integration UCONABC

security model. The enforcement of such policies necessitates the extension of
the technical infrastructure as well as process-level adaptations. Nevertheless,
we will not elaborate on this point as this is part of some future agenda of the
health@net project. We sketched some of these extensions in Chapter 11.

Application and Security Domain

The problem domain relates an Application Domain (Figure 12.8) – here de-
fined as ”accessing distributed patient records” – to a Security Domain.

The Security Domain captures industry and application specific security
concerns through abstract Security Requirements (Box A in Figure 12.8) which
are enforced by concrete Security Policies (Box B). Security Policies (e.g.,
emergency access, 4-eyes-principle, and patient privacy) are based on a spe-
cific Security Model (Box C) introducing security related semantics into the
models.

The Application Domain introduces the specific application context to
which Security Policies refer.

The Document Model (Box D) represents the view onto the consolidated
patient record. The latter may be accessed by roles according to their access
permissions. Roles are defined in the Role Model (Box E).

12.5.2 Model Views

As already stated in Section 12.5.1 the Problem Domain for the phases 2a
and 2b cannot be defined in terms of a network of partners realizing a virtual,
decentralized workflow by calling services and exchanging documents as was
the case for the running example. Instead, we have to consider a scenario
where partners need access to a consolidated view of a document whose parts
are distributed over multiple security domains. Each domain keeps control
over the parts it produced and actually contributes to the “virtual” patient
record. This implies an almost static view onto the Application Domain.

www.manaraa.com

12.5 Realizing Security with the Sectet-Framework 209

Fig. 12.8. Health@net Problem Domain

Therefore, when considering application level security concerns as planned
in phases 2a and 2b of the health@net security concept, we primarily use
the three models of the Interface View to model the application scenario (cf.
Figure 12.9). However, service-level security remains a matter of securing the
flow of documents between service components. This necessitates to rely on
the Global Workflow Model for security design.

Subsequently we will show how the various models are used in phase 1
of the health@net Security Concept (cf. Section 12.4). Phases 2a and 2b are
covered in Section 12.6.

Phase 1 – Service-level Security

Service-level security is primarily designed, modeled and configured during the
initial implementation process. Once the system is up and running, changes

www.manaraa.com

210 12 health@net

Fig. 12.9. Adapted Model View for Phases 2a and 2b

Fig. 12.10. Service Role Model

to security requirements at the level of services are rather unlikely. However,
the health@net team chose to integrate security into the engineering process
based on a model-driven methodology to cater for maximal flexibility and
implementational correctness.

The choice for a model driven approach to security engineering was fa-
cilitated by choosing the paradigm of Service Oriented Architectures for the
underlying architectural blueprint: the component based Sectet Reference
Architecture enforces security policies by “embedding” services components in
a security infrastructure, whose components act as a single point of access to
service components from the outside. The design of loosely-coupled compo-
nents supports an independent implementation of functionality and security.

In the Interface View every component of the health@net core architecture
(cf. Figure 12.2 on p. 195) is modeled as a role that offers services with specific
properties and access rules.

The Role Model defines the roles that tries to get access to offered service
in a rather flat hierarchical structure (Figure 12.10).

The Document Model (DM) is a class diagram that describes the datatypes
used in each component for its clients. Those will be seen as documents, not
objects and will be interpreted in context of XML schemas. Figure 12.11 shows
the DM for Registration Data flowing from the DMDI to the GI.

The Interface Model (IM) consists of all services/functions that should be
visible to outside the boundaries of the components. The parameters used in
these functions are either primitive datatypes or types defined in the document
model. The Interface Model is independent from the context in which the

www.manaraa.com

12.5 Realizing Security with the Sectet-Framework 211

Exemplary Document Model Registration Data

Fig. 12.12. Updating Patient Data: Document Flow in the Target Architecture

services will be invoked. The IM is not shown here. However, interfaces are
also modeled in the Global Workflow (cf. Figure 12.12).

The Access Model describes the constraints, under which each role is al-
lowed to invoked specific service in a component.

Figure 12.12 illustrates a Global Workflow Model that captures the docu-
ment flow between the different service components in the target architecture.

www.manaraa.com

212 12 health@net

In Phase 1 the security model only considers security requirements at the
service level. The Figure exemplarily shows a Basic Security Policy for the
document Registration Data

In the context of Phase 1 of the Security Concept, each service component
will be represented by a Partner Role. This means that every service com-
ponent represents a security domain of its own and is modeled as an Activity
Partition in the UML-Activity Diagram. Documents are passed as parameters
of Web service calls. According to the interaction paradigm of Web services,
service invocation is modeled as a bilateral interaction through an Object Flow
between two roles. Security policies are associated with Documents modeled
as Object Nodes.

The models are parsed by the Transformation Component and machine-
readable XACML files configuring the security components wrapping each
service components are generated.

12.6 health@net - Phases 2a & 2b

In this section we present use cases, the health@net Security Architecture,
policy generation and distribution for the enforcement of Advanced Security
Policies as defined in Phases 2a and 2b. Henceforth, we focus on Authorization
Policies.

12.6.1 Use Cases

Figure 12.13 shows use cases related to static and dynamic authorization. For
simplicity, we consider only cases where doctors are the only actors who need
access to patient records. Other actors who may need access to patient records
are insurers, pharmacists and nurses etc.

Default Access Control Policies

During the deployment phase, the Security Engineer configures the security
components by deploying generated policies. The Security Engineer defines
Default Access Control Policies and stores them in repositories. When a Gen-
eral Actor tries to access records, his access rights are checked according to
permissions specified. All access is generally reported and logged for potential
auditing.

Patient Privacy Policies

In addition to what is specified in Default Access Control Policies, a Patient
can define his own privacy rules. He can specify fine granular policies to restrict
access to his records to specific actors or to further restrict access to specific
contextual parameters (e.g., time, location etc.). For the sake of practicability,

www.manaraa.com

12.6 health@net - Phases 2a & 2b 213

Fig. 12.13. Use Cases Related to Static and Dynamic Authorization (Phase 2a &
2b)

there will be a set of predefined rules in a templates-like style that patients
can choose as Privacy Policies (“opt-in” or “opt-out”). In case a patient does
not specify any Privacy Policy, only Default Access Control Policies defined
by the service provider are applicable.

12.6.2 Security Architecture

The Security Architecture is designed as a Service Oriented Architecture in a
way to meet the Security Requirements and Objectives that were defined be-
forehand. Early in the design process, the health@net team made the following
decisions:

1. Authentication and single sign-on should be based on the SAML protocol.
2. The authorization model should primarily be based on Role Based Access

Control and eventually be extended to the UCONABC model.
3. Identity management should happen through certificates: user and service

components are assigned digital certificates bound to the role assigned to
the subject.

www.manaraa.com

214 12 health@net

Generally, the Security Architecture (SA) provides the following function-
alities:

1. Specification of Security Policies. The SA supports both: the design of
Default Access Control Policies by the Security Engineer as well as Privacy
Polices by the Patient himself.

2. Management and Deployment of Privacy Policies defined by Patients. De-
fault Access Control Policies are stored locally during initial deployment
(cf. Section 12.6.2).

3. Enforcement of both types of Security Policies through an XML-based
security infrastructure supporting the Authentication and Authorization
Process at the services- as well as the user level.

The Authentication Process

The Authentication Process is performed in two steps.

User Authentication

The Policy Enforcement Point (PEP) acts as the single point of entry into
the domain. In order to authenticate the calling subject, the call is redirected
to a trusted third party acting as an Identity Provider. The latter asserts the
identity of the calling subject when he first log in to the system (e.g., with his
E-Card). The Identity Provider extracts the identity and subject attributes
required for authorization, and returns them as SAML protocol assertions to
the PEP.

Service Authentication

Inside the Security Architecture, Service Components representing Security
Domains use certificates to authenticate each other. The Policy Enforcement
Point identifies calling Service Components and extract their attributes. This
includes its Service Component-role and additional meta-information. This
information is integrated into certificates assigned to every Service Component
during deployment or reconfiguration.

The Authorization Process

Figure 12.14 shows the Security Architecture for the enforcement of access
control which consists of a two-step policy enforcement: (1) Cryptographic-
and (2) Authorization Policy Enforcement; Cryptographic Policy Enforcement
checks security requirements related to Basic Security Policies and leverages
basic cryptographic controls like digital encryption and signature to enforce
Confidentiality, Integrity, and Non-repudiation. Authorization Policy Enforce-
ment enforces application-level access control taking User-roles and handling

www.manaraa.com

12.6 health@net - Phases 2a & 2b 215

Fig. 12.14. Security Architecture

Advanced Security Policies (e.g., 4-Eyes-Principle). Enforcement may neces-
sitate process-level adaptations.

Both steps rely on three components: a Policy Enforcement Point- (PEP), a
Policy Decision Point (PDP), and a Policy Repository. The PDPs are based on
SUN’s XACML reference implementation, whereas the PEPs implementation
technology depends on the target architecture’s platform. For a Web services
based target architecture using the AXIS framework [189], the PEP can be
integrated as a “Handler”. The Policy Repository can be a plain database or
an encrypted local file system.

When a component gets a request, the XML security gateway intercepts
the call. A user’s request is basically handled according to the following pro-
cedure.

1. Cryptographic Policy Enforcement

The security gateway first performs checks on cryptographic security require-
ments: it queries the cryptographic PEP with a request. The latter forwards a
request for decision to the cryptographic PDP. The PDP retrieves the corre-
sponding policy from the Policy Repository, evaluates the request and returns
a decision response to the PEP; based on the response the PEP either blocks
or forwards the request together with information on caller identity and role
(of both the user and the requesting service component) to the Authoriza-
tion PEP.

www.manaraa.com

216 12 health@net

2. Authorization Policy Enforcement

The Authorization PEP will in turn query the related PDP for an access
control decision. Its PDP will have to check two policies: the static Default
Security Policy and Privacy Policies defined by Patients. Upon a positive
decision the Authorization PEP forwards the call to the Service Component.

Figure 12.15 shows the sequence diagram for the requesting procedure.
Before firing a document request, the user logs in and authenticates himself
to the Web portal; his call is redirected to the Identity Provider (IP). The IP
asserts the user’s identity and his role and returns the SAML assertion to the
Web portal. After authentication, the Web portal forewards the request to the
corresponding Service Component. Security Components wrap the latter and
thereby enforce Security Policies as specified in the models.

Fig. 12.15. Processing a Service Request

www.manaraa.com

12.6 health@net - Phases 2a & 2b 217

XACML Policy Generation

Models are translated into executable XACML Policies. The XACML lan-
guage can address either multiple “subjects” with one policy or handle a set
of policies for a single request. This allows to build a single policy refer-
ring to both types of subjects involved, namely the User-role and the Service
Component-role.

Figure 12.16 shows the model for XACML policy language. The core el-
ement of a Policy is the Target. It consists of a Subject, a Resource, an Ac-
tion and an Environment. The latter represents the attributes of one or more
Subject(s) trying to commit an Action on a Resource in context of specific
Attributes of the Environment.

A Rule consists of a Target, a Condition and an Effect resulting from an
evaluation. An Effect can be either a “permit”or a “deny”. A Rule is evaluated
with respect to a specific Target.

A Policy consists of a Rule, a Target, and a PolicySet. A PolicySet can
have one or more Policies. In this case a combination algorithms defines the
behaviour in case more than one Policy is applicable to a specific request.

All information needed for the generation of XACML policies is captured
in models of the Interface View. Figure 12.17 shows a class diagram that
contains a part of the Document Model. Roles are defined with (1) specific
attributes (e.g., ID, LOINC CODE [15] etc.), (2) the Document exchanged
and stored (in form of the “Clinical Document Architecture” (CDA))[115],
and (3) Constraints to access the Document by the specific Role.

Fig. 12.16. XACML Policy Language Model

www.manaraa.com

218 12 health@net

Fig. 12.17. Document Model

Fig. 12.18. Models of the Interface View

Figure 12.18 exemplarily shows the rest of the models in the Interface
namely the Role-, the Interface- and the Access Model.

As was mentioned before access control in health@net is based on the Role
Based Access Control: Users are assigned Roles and Roles are assigned Permis-
sions. Public healthcare authorities are responsible for informally defining the
Roles to be considered in the system. Roles correspond to the various stake-
holders in healthcare scenarios (doctors, nurses, pharmacists etc..). User-Role
assignement is based on digital or even paper-based certificates. However in

www.manaraa.com

12.6 health@net - Phases 2a & 2b 219

this book, we will only consider digital certificates based on public key certifi-
cates.

Administrators of local nodes (corresponding to a stakeholder’s security
domain or a Partner_Role in the GWfM) will model these hierarchical roles
into models as shown in the Role Model. The Interface Model represents the
services that are offered by the various Components and Users. Figure 12.18
exemplarily shows services provided by the Document Repository components.
The model illustrates the use of a Constraint applied when the corresponding
role is trying to execute the service. The Constraint states that the specializa-
tion of the User-role Doctor should correspond to the type of document that is
to be accessed. The type of the document is extracted using the LOINC code
[15] – universal identifiers for laboratory and clinical documents – in the clin-
ical documents strucured according to the ANSI-standard Clinical Document
Architecture (CDA) [115].

Figure 12.19 summarizes the steps for model tranfomation. XACML poli-
cies are generated based on the UML models according to the rules of a
Domain Specific Language (DSL) which is structured through meta-models.
In a first step, DSL’s meta-models are specified. Based on the DSL, an In-
stance Model is designed and finally – based on Model-to-Code transformation
functions – the XACML policies are generated.

Policy Distribution

Especially in peer-to-peer architectures, the distribution of policies represents
a major challenge.

In health@net we have two distinct policies for authorization decisions:
Default Access Control Policies are created by the service provider holding
an administrative role. They contain the rules for Security Policies as defined

Fig. 12.19. Model Tranformations

www.manaraa.com

220 12 health@net

for Phase 1 and 2a of the Security Concept (Services Level- and Static Ac-
cess Control). On the other hand, Patient Privacy Policies are defined by the
Patient as defined for Phase 2b of the Security Concept (Dynamic Access
Control). The policies of the first type will be stored locally, at the location
they were created. The distribution of the second type of policies is not so
trivial and is based on a specific protocol. There are three possible approach
to handle the distribution of Patient Privacy Policies:

1. a central server stores Patient Privacy Policies. Upon request the central
server is asked to provide the suitable policy (as depicted in Figure 12.20.

2. A Policy Management System that is similar to a Public Key Infrastruc-
ture (PKI). In this approach each policy is signed by a trusted third party
and distributed to the users that need them. That means each request
should be accompanied with the corresponding trusted and signed policy.

3. The third option is“Instant Policy Distribution”: policies are stored locally
at the nodes where the patient’s document is stored.

The first approach exhibits two shortcommings. First, it represents a single
point of failure. Second, it may cause significant delays as a bottle-neck for
request processing: the remote policy repository that has to be queried by ser-
vice components for each incomming request. These problems are solved by the
second approach. However a new problem arises: possible state inconsistencies

Fig. 12.20. Central Server Architecture

www.manaraa.com

12.6 health@net - Phases 2a & 2b 221

between the various local copies of the same policies may occur. Especially
the lack of a reference point for conflict resolution and policy synchronization
does not make it a viable approach.

Although the third approach solves the problems posed by the first and
the second approach, it requires a complex system for policy management
(policy issuing, updating, revoking and storing functionalities). This makes
it a heavy investment. Cost considerations lead the health@net to opt for a
hybrid approach combining the first and the second approach. Accordingly,
Privacy Policies are first stored on a central server. In a second step, the
central server publishes and distributes the policies to the components. Thus,
every component has a copy of this policy. Figure 12.21 shows the workflow
for this adapted “Instant Policy Distribution” done by the central server after
the patient creates his Patient Privacy Policy and stores it on the server.

As illustrated in the figure the Patient will use a Policy Generation Tool
to generate his Patient Privacy Policy. He will then send his policy to the
central server which first queries the Registry service for the locations of all

Fig. 12.21. Workflow for Instant Policy Distribution

www.manaraa.com

222 12 health@net

local nodes in question. The Registry service stores and maintains the health
record of this Patient. After receiving a set of locations of relevant local nodes,
the central cerver updates or stores the policy of the patient in the respective
Policy Repositories of local nodes.

www.manaraa.com

Part IV

Appendices

www.manaraa.com

A

Mapping Tables

www.manaraa.com

226 A Mapping Tables

A.1 Mapping Table for Inbound Policy File

Fig. A.1. Mapping Table for Inbound Policy File

www.manaraa.com

A.2 Mapping Table for Outbound Policy Files 227

A.2 Mapping Table for Outbound Policy Files

Fig. A.2. Mapping Table for Outbound Policy Files

www.manaraa.com

228 A Mapping Tables

A.3 Mapping Table for BPEL Files

Fig. A.3. Mapping Table for BPEL Files

www.manaraa.com

A.4 Mapping Table for BPEL Files (continued) 229

A.4 Mapping Table for BPEL Files (continued)

Fig. A.4. Mapping Table for BPEL Files (continued)

www.manaraa.com

230 A Mapping Tables

A.5 Mapping Table for WSDL Files

Fig. A.5. Mapping Table for WSDL Files

www.manaraa.com

References

1. AndroMDA,
http://www.andromda.org/.

2. Eclipse - an open development platform,
http://www.eclipse.org/.

3. Enterprise JavaBeans Technology,
http://java.sun.com/products/ejb/.

4. Integrating the Healthcare Enterprise,
http://www.ihe.net/.

5. MagicDraw UML,
http://www.magicdraw.com/.

6. Netbeans 6.1,
http://www.netbeans.org/.

7. Oracle BPEL Process Manager,
http://www.oracle.com/appserver/bpel home.html.

8. Rational Rose,
http://www-306.ibm.com/software/awdtools/developer/rose/.

9. WebSphere Integration Developer,
http://www-306.ibm.com/software/integration/wid/.

10. Wikipedia. http://en.wikipedia.org/wiki/Web service [Last Modified 14 July
2008].

11. Information Technology Security Evaluation Criteria, 1991. Version 1.2.
12. Common Criteria for Information Technology Security Evaluation, Part 1: In-

troduction and General Model, 1999. Version 2.1, CCIMB-99-031.
13. SHVT Manual, Fraunhofer Institute for Secure Telecooperation, 2004.
14. Business Process Modeling Notation (BPMN) Information, 2006. Available

online: http://www.bpmn.org.
15. Logical Observation Identifiers Names and Codes (LOINC ©c), 2008. LOINC

Version 2.22 and RELMA Version 3.23.
16. Trusted Computer System Evaluation Criteria, Dec. 1985. DOD 5200.28-STD.
17. ISO/IEC 13888-1. Information Technology - Security Techniques - Non- repu-

diation - Part 1: General. Technical report, 1997.
18. ISO/IEC 13888-3. Information Technology - Security Techniques - Non- repu-

diation - Part 3: Mechanisms Using Asymmetric Techniques. Technical report,
1997.

www.manaraa.com

232 References

19. W. M. P. van der Aalst. Verification of Workflow Nets. In G. Balbo, edi-
tor, Application and Theory of Petri Nets 1997, volume 1248, pages 407–426.77
Springer Verlag, 1997.

20. W. M. P. van der Aalst, A. Kumar, and H. M. W. Verbeek. Organizational
Modeling in UML and XML in the Context of Workflow Systems. In Pro-
ceedings of the 2003 ACM Symposium on Applied Computing (SAC), pages
603–608, 2003.

21. W. M. P. van der Aalst and M. Weske. The P2P Approach to Interorgani-
zational Workflows. In Moira C. Norrie, editor, CAiSE, volume 2068, pages
140–156. Springer, 2001.

22. W.M.P. van der Aalst. Loosely Coupled Interorganizational Workflows: Mod-
elling and Analyzing Workflows Crossing Organizational Boundaries. Informa-
tion and Management, 37(2):67–75, 2000.

23. M. Alam. SectetPL : A Predicative Language for the Specification
of Access Rights. Technical report, 2006. URL: http://qe-informatik.
uibk.ac.at/muhammad/TechnicalReportSECTETPL.pdf.

24. M. Alam. Model Driven Realization of Dynamic Security Requirements in Dis-
tributed Systems. PhD thesis, Leopold-Franzens-Universitat Innsbruck, 2007.¨

25. M. Alam, M. Hafner, and R. Breu. Modeling Authorization in an SOA based
Application Scenario. In IASTED Conference on Software Engineering, pages
79–84, 2006.

26. M. Alam, M. Hafner, and R. Breu. Model-Driven Security Engineering for
Trust Management in Sectet. Journal of Software, Academy Publisher, 2(1),
2007.

27. C. J. Alberts and A. J. Dorofee. Managing information security risks: the
OCTAVE approach. Pearson Education, 2002.

28. B. Alhaqbani and C. Fidge. Access Control Requirements for Processing
Electronic Health Records. In A. H. M. ter Hofstede, B. Benatallah, and
H.-Y. Paik, editors, Business Process Management Workshops, volume 4928
of Lecture Notes in Computer Science, pages 371–382. Springer, 2007.

29. A. Anderson. Core and hierarchical role based access control (RBAC) profile
of XACML v2.0. Oasis standard, OASIS, 2005.

30. A. Anderson and H. Lockhart. SAML 2.0 profile of XACML v2.0. Oasis
standard, OASIS, 2005.

31. R. J. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. Wiley, 2001.

32. S. Anderson. Web Services Secure Conversation Language (WS-Secure Con-
versation), February 2005. Technical report, 2005.

33. S. Anderson. Web Services Trust Language (WS-Trust), February 2005. Tech-
nical report, 2005.

34. T. Andrews and et al. Business Process Execution Language for Web Services,
Version 1.1. Technical report, BEA, IBM, Microsoft, SAP, Siebel, 2003.

35. A. Arkin. Business Process Modeling Language (BPML). Specification,
pbmi.org, 2002.

36. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha,
S. Thatte, P. Yendluri, and A. Yiu. Web Services Business Process Ex-
ecution Language Version 2.0. Technical report, 2005. http://www.oasis-
open.org/committees/download.php/14616/wsbpel-specification-draft.htm.

www.manaraa.com

References 233

37. B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, J. Klein,
B. LaMacchia, P. Leach, J. Manferdellie, H. Maruyama, A. Nadalin,
N. Nagaratnam, H. Prafullchandra, J. Shewchuk, and D. Simon. Web Ser-
vices Security (WS-Security) - Version 1.0. Specification, IBM Corp., Mircosoft
Corp., VeriSign, Inc., 2002.

38. V. Atluri, W. Huang, and E. Bertino. A Semantic Based Execution Model
for Multilevel Secure Workflows. International Journal of Computer Security,
8(1):3–41, 2000.

39. V. Atluri and W-K. Huang. Enforcing Mandatory and Discretionary Security
in Workflow Management Systems. Journal of Computer Security., 5(4):303–
339, 1997.

40. S. Bajaj. Web Services Policy 1.2 - Framework (WS-Policy) W3C Member
Submission 25 April 2006. Technical report, W3C, 2006.

41. S. Bajaj, G. Della-Libera, and B. Dixon. Web Services Federation Language
(WS-Federation), version 1.0. Technical report, BEA, IBM, Microsoft, RSA
Security and VeriSign, 2002.

42. K. Ballinger and D. Box. Web Services Metadata Exchange (WS-
MetadataExchange). Technical report, 2004.

43. M. Bartel, J. Boyer, and B. Fox. XML-Signature Syntax and Processing, W3C
Recommendation 12 February 2002. Technical report, W3C, 2002.

44. D. Basin, J. Doser, and T. Lodderstedt. Model Driven Security for Process-
Oriented Systems. In Proc. 8th ACM Symposium on Access Control Models
and Technologies. ACM Press, 2003.

45. D. Basin, J. Doser, and T. Lodderstedt. Model driven security: From UML
models to access control infrastructures. ACM Trans. Softw. Eng. Methodol.,
15(1):39–91, 2006.

46. R. Bastos and D. Ruiz. Extending UML activity diagram for workflow modeling
in production systems. pages 3786–3795, 2002.

47. T. Bellwood, S. Capell, and L. Clement. UDDI Version 3.0.2, UDDI Spec
Technical Committee Draft, Dated 20041019. Technical report, OASIS, 2004.

48. M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing
contracts. IEEE Transaction on Information Theory, 36(1):40–46, 1990.

49. M. Bernauer, G. Kappel, and G. Kramler. Comparing WSDL-Based and
ebXML-Based Approaches for B2B Protocol Specification. In ICSOC, pagesCC
225–240, 2003.

50. M. Bernauer, G. Kappel, G. Kramler, and W. Retschitzegger. Specification of
Interorganizational Workflows - A Comparison of Approaches. In Proceedings
of the 7th World Multiconference on Systemics, Cybernetics and Informatics,
pages 30–36, 2003.

51. E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement of Au-
thorization Constraints in Workflow Management Systems. ACM Transactions
on Information and System Security, 1(2):65–104, 1999.

52. R. Bilorusets, D. Box, and L. F. Cabrera. Web Services Reliable Messaging
Protocol (WS-ReliableMessaging), February 2005. Technical report, 2005.

53. M. Bishop. Computer Security: Art and Science, chapter 25. Addison-Wesley,
December 2002.

54. T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup
Language (XML) 1.0 (Second Edition). W3C Recommendation 6 October,
World Wide Web Consortium, 2000.

www.manaraa.com

234 References

55. R. Breu, M. Breu, M. Hafner, and A. Nowak. Web Service Engineering - Ad-
vancing a New Software Engineering Discipline. In D. Lowe and M. Gaedke,
editors, Web Engineering, Proceedings of the 5th International Conference,
ICWE 2005, volume 3579 of Lecture Notes in Computer Science, Sydney, Aus-
tralia, 2005. Springer.

56. R. Breu, K. Burger, M. Hafner, and G. Popp. Towards a Systematic Devel-
opment of Secure Systems. Special Issue of the Information Systems Security
Journal, 13(3):1–12, 2004.

57. R. Breu, M. Hafner, and B. Weber. Model Driven Security for Inter-
organizational Workflows in e-Government. In TCGOV, pages 122–133, 2005.VV

58. R. Breu, G. Popp, and M. Alam. Model-based development of access policies.
Journal for Software Tools and Technology Transfer (STTT), 9:457–470, 2007.

59. A. D. Brucker, J. Doser, and B. Wolff. An MDA framework supporting OCL.
j-eceasst, 5, 2006.

60. BSI - British Standards Institution. BS 7799-3:2006 Information security man-
agement systems - Part 3: Guidelines for information security risk management,
2006.

61. BSI (Federal Office for Information Security). IT Baseline Protection Manual,
2004.

62. L. F. Cabrera, G. Copeland, W. Cox, M. Feingold, T. Freund, C. Kaler,
J. Klein, D. Langworthy, A. Nadalin, D. Orchard, I. Robinson, J. Shew-
chuk, and T. Storey. Web Service Coordination (WS-Coordination). Speci-
fication, BEA Systems, IBM Corp., Microsoft Corp., 2003.

63. L. F. Cabrera, G. Copeland, W. Cox, T. Freund, J. Klein, D. Langwor-
thy, I. Robinson, T. Storey, and S. Thatte. Web Services Business Activity
Framework (WS-BusinessActivity). Specification, BEA Systems, IBM Corp.,
Microsoft Corp., 2004.

64. L. Felipe Cabrera, G. Copeland, and M. Feingold. Web Services Atomic Trans-
action (WS-AtomicTransaction), Version 1.0. Technical report, 2005.

65. L. M. Camarinha-Matos, H. Afsarmanesh, M. Ollus, and L. M. Camarinha-
Matos. Virtual Organizations. Systems and Practices. Springer-Verlag, 1. edi-
tion edition, 2005.

66. L. M. Camarinha-Matos, H. Afsarmanesh, M. Ollus, L. Matos, and
M. Camarinha. Virtual Organizations. Systems and Practices. Springer-Verlag,
1. edition edition, 2005.

67. S. Cantor, J. Kemp, R. Philpott, and E. Maler. Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML) V2.0. Oasis standard,
OASIS, 2005.

68. F. Casati, E. Shan, U. Dayal, and M.-C. Shan. Business-oriented management
of web services. Commun. ACM, 46(10):55–60, 2003.MM

69. D. W. Chadwick and A. Otenko. RBAC Policies in XML for X.509 Based
Privilege Management. In SEC ’02: Proceedings of the IFIP TC11 17th In-
ternational Conference on Information Security, pages 39–54, Deventer, The
Netherlands, The Netherlands, 2002. Kluwer, B.V.

70. R. Chinnici, M. Gudgin, J.−J. Moreau, J. Schlimmer, and S. Weerawarana.
Web Service Description Language (WSDL) Version 2.0 Part 1: Core Language.
W3C Working Draft 10 November, World Wide Web Consortium, 2003.

71. J. Clark, C. Casanave, K. Kanaskie, B. Harvey, J. Clark, N. Smith, J. Yunker,
and K. Riemer. ebXML Business Process Specification Schema Version 1.01.
Specification, UN/CEFACT and OASIS, 2001.

www.manaraa.com

References 235

72. Commission of the European Union. e-Health - making healthcare bet-
ter for European citizens: An action plan for a European e-Health Area
[online]., 2004. Available at: http://europa.eu/eur-lex/en/com/cnc/2004/
com2004 0356en01.pdf [Accessed 4. October 2006].

73. R. Crook, D. C. Ince, L. Lin, and B. Nuseibeh. Security Requirements En-
gineering: When Anti-Requirements Hit the Fan. In RE ’02: Proceedings of
the 10th Anniversary IEEE Joint International Conference on Requirements
Engineering, pages 203–205, Washington, DC, USA, 2002. IEEE Computer
Society.

74. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system
and compositional logic for security protocols. Journal of Computer Security,
13:423–482, 2005.

75. DCSSI, Direction centrale de la sécurité des syst`´ emes d’information. EBIOS:`
Expression des Besoins et Identification des Objectifs de sécurité, June 2005.´
Version 2.0.

76. M. Donner. From the Editors: Whose Data Are These, Anyway? IEEE Security
& Privacy, 2(3):5–6, 2004.

77. A. Dussart, B. Aubert, and M. Patry. An Evaluation of Inter-Organizational
Workflow Modeling Formalisms. J. Database Manag., 15(2):74–104, 2004.

78. C. Eckert. IT-Sicherheit. Oldenbourg, Munchen [u.a.], 2004.¨
79. E. Rissanen (ed.). XACML v3.0 Administration and Delegation Profile Version

1.0 Working Draft 19, 10 Oct 2007. Technical report, OASIS open 2005, 2007.
80. Active Endpoints. ActiveBPEL Open Source Engine Project, 2008.

http://www.active-endpoints.com/active-bpel-engine-overview.htm.
81. T. Erl. Service-Oriented Architecture : A Field Guide to Integrating XML and

Web Services. Prentice Hall PTR, 2004.
82. R. Eshuis and R. Wieringa. A formal semantics for UML activity diagrams –

Formalising workflow models, 2001.
83. P. Giorgini et al. ST–Tool: A CASE Tool for Modeling and Analyzing Trust

Requirements. Springer LNCS 3477, 2005.
84. R. Vogl et al. Architecture for a distributed national electronic health record

in Austria. In Proc. EuroPACS 2006: The 24th International EuroPACS Con-
ference, pages 67–77, 2006.

85. T. Schabetsberger et al. From a Paper-based Transmission of Discharge Sum-
maries to Electronic Communication in Health Care Regions. Int. Journal of
Medical Informatics, 75, 3-4:209–215, 2006.

86. M. Farwick. Generating Local BPEL Processes from Global Workflows Ex-
pressed in UML2 Activity Diagrams. B.s. thesis, Dept. Computing Science,
University of Innsbruck, 2007.

87. D. F. Ferraiolo and D. R. Kuhn. Role Based Access Control. In Proc. 15th
National Computer Security Conference, 1992.

88. D. Firesmith. Engineering Security Requirements. Journal of Object Technol-
ogy, 2(1):53–68, 2003.

89. The Apache Foundation. Apache WSS4J,
http://ws.apache.org/wss4j/ .

90. M. Fowler. Refactoring. Improving the Design of Existing Code. Addison-
Wesley, 1999.

91. Bundesamt fur Sicherheit in der Informationstechnologie. SOA Securityff¨
Compendium,

www.manaraa.com

236 References

http://www.bsi.bund.de/literat/studien/soa/soa-security-kompendium.pdf,
2008.

92. D. Frankel. Model Driven Architecture. John Wiley & Sons, 2003.
93. E. Freudenthal, E. Keenan, T. Pesin, L. Port, and V. Karamcheti. DisCo: A

Distribution Infrastructure for Securely Deploying Decomposable Services in
Partly Trusted Environments. Technical report, 2001.

94. E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti. dRBAC:
Distributed Role-based Access Control for Dynamic Coalition Environments.
In Twenty-second IEEE International Conference on Distributed Computing
Systems (ICDCS), Vienna, Austria, 2002, 2002.

95. A. L. Opdahl G. Sindre, D. G. Firesmith. A Reuse-Based Approach to Deter-
mining Security Requirements. In Proc. 9th International Workshop on Re-
quirements Engineering: Foundation for Software Quality (REFSQ’03), June
2003.

96. T. Garfinkel, M. Rosenblum, and D. Boneh. Flexible OS Support and Appli-
cations for Trusted Computing. In Proceedings of the 9th Workshop on Hot
Topics in Operating Systems HotOS-VIII, 2003.II

97. M. Gerber, R. von Solms, and P. Overbeek. Formalizing information secu-
rity requirements. Information Management & Computer Security, 9(1):32–37,
2001.

98. M. Gerber and Rossouw von von Solms. From Risk Analysis to Security Re-
quirements. Computers & Security, 20:577–584, 2001.

99. G. Gobel, R. Penz, T. Schabetsberger, M. Springmann, and F. Wozak.¨
Health@net- service architecture of sehr, system description and technical use
cases. Technical report, 2008.

100. D. Gollmann. Computer Security. John Wiley & Sons, 1998.
101. P. W. P. J. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner. CrossFlow: Cross-

Organizational Workflow Management for Service Outsourcing in Dynamic
Virtual Enterprises. IEEE Data Engineering Bulletin, 24(1):52–57, 2001.

102. E. Gudes, M. S. Olivier, and R. P. van de Riet. Modelling, specifying and
implementing workflow security in Cyberspace. Journal of Computer Security,
7(4):287–315, 1999.

103. M. Gudgin, M. Hadley, N. Mendelsohn, J.−J. Moreau, and H. F. Nielsen.
SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommendation 24
June, World Wide Web Consortium, 2003.

104. M. Gudgin, M. Hadley, N. Mendelsohn, J.−J. Moreau, and H. F. Nielsen.
SOAP Version 1.2 Part 2: Adjuncts. W3C Recommendation 24 June, World
Wide Web Consortium, 2003.

105. T. Gunter and N. Terry. The Emergence of National Electronic Health Record
Architectures in the United States and Australia: Models, Costs, and Ques-
tions. Journal of Medical Internet Research, 7(1):e3, 2005.

106. M. Hafner, B. Agreiter, R. Breu, and A. Nowak. Sectet: An Extensible Frame-
work for the Realization of Secure Inter-Organizational Workflows. Journal of
Internet Research, 16(5), 2006.

107. M. Hafner, M. Alam, and R. Breu. Towards a MOF/QVT-based Domain Archi-
tecture for Model Driven Security. In Proceedings of the 9th International Con-
ference on Model Driven Engineering Languages and Systems (Models 2006),
Genova, Italy, 2006.

www.manaraa.com

References 237

108. M. Hafner, M. Breu, R. Breu, and A. Nowak. Modelling Inter-organizational
Workflow Security in a Peer-to-Peer Environment. In ICWS ’05: Proceedings
of the IEEE International Conference on Web Services (ICWS’05), pages 533–
540, Washington, DC, USA, 2005. IEEE Computer Society.

109. M. Hafner, R. Breu, and B. Weber. Model Driven Security for Inter-
Organizational Workflows in E-Governement. In A. Mitrakas, P. Hengeveld,
Despina. Polemi, and J. Gamper, editors, Secure eGovernment Web Services,
chapter 14. Idea Group, Inc., 2007.

110. M. Hafner, M. Memon, and M. Alam. Modeling and Enforcing Advanced
Access Control Policies in Healthcare Systems with Sectet. In H. Giese, editor,
LNCS Volume on Models in Software Engineering Workshops and Symposia at
MoDELS 2007 Nashville, TN, USA, September 30 – October 5, 2007 Reports
and Revised Selected Papers. Springer, 2007.

111. C. Hailey, R. Laney, J. Moffett, and B. Nuseibeh. Security requirements en-
gineering, a framework for representation and analysis. to appear in IEEE
Transactions on Software Engineering, 2007.

112. A. Hall and R. Chapman. Correctness by Construction: Developing a Com-
mercial Secure System. IEEE Software, 19(1):18–25, /2002.

113. P. Hallam-Baker and S. H. Mysore. XML Key Management Specifica-
tion (XKMS 2.0). Technical report, W3C, 2005. URL: http://www.w3.org/
TR/2005/REC-xkms2-20050628/.

114. B. Hartman, D. J. Flinn, K. Beznosov, and S. Kawamoto. Mastering Web
Services Security. Wiley, 2003.

115. HL7.org. HHL7 Version 3 Standard: Clinical Document Architecture (CDA),
Release 2. Ansi/hl7 cda, r2-2005, 2005.

116. J. Hu and A. Weaver. Dynamic, Context-Aware Access Control for Distributed
Healthcare Applications, August 2004.

117. V. Hu, D. Ferraiolo, and D. Kuhn. Assessment of Access Control Systems.
Technical Report NISTIR 7316, National Inst. of Standards and Technology,
US Department of Commerce, September 2006.

118. W.K. Huang and V. Atluri. SecureFlow: A secure Web-enabled Workflow
Management System. In ACM Workshop on Role-Based Access Control, 1999.

119. T. Imamura. XML Encryption Syntax and Processing, W3C Recommendation
10 December 2002. Technical report, W3C, 2002.

120. Integrating the Healthcare Enterprise. Health@net- service architecture of
sehr, system description and technical use cases. Trial implementation ver-
sion, 2004. Available at: http://healthcare.xml.org/resources/IHE ITI Cross-
enterprise Doc Sharing 2004 08-15.pdf.

121. ISO (International Organization for Standardization). ISO/IEC 27001 Infor-
mation technology – Security techniques – Information security management
systems – Requirements, 2005.

122. ISO/IEC 13888-2. Information technology - security techniques - non- repu-
diation - part 2: Mechanisms using symmetric techniques. Technical report,
1998.

123. IT Governance Institute. Control Objectives for Information and related Tech-
nology (COBIT) 4.1, 2007.

124. P. Jiang, Q. Mair, and J. Newman. Using UML to Design Distributed Col-
laborative Workflows: from UML to XPDL. In WETICE ’03: Proceedings
of the Twelfth International Workshop on Enabling Technologies, page 71,
Washington, DC, USA, 2003. IEEE Computer Society.

www.manaraa.com

238 References

125. J. Jurjens.¨ Secure Systems Development with UML. Springer Verlag, 2004.
126. N. Kavantzas, D. Burdett, and G. Ritzinger. Web Services Choreography De-

scription Language Version 1.0 W3C Working Draft 27 April 2004. Working
draft, W3C, 2004.

127. L. Kohn, J. Corrigan, and M. Donaldson. To Err is Human: Building a Safer
Health System. Washington DC, National Academy Press, 2000.

128. S. Kremer, O. Markowitch, and J. Zhou. An Intensive Survey of Fair Non-
Repudiation Protocols. Computer Communications, 25:1601–1621, 2002.

129. F. Leymann and D. Roller. Production workflow: concepts and techniques.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

130. M. Li and R. Poovendran. Enabling Distributed Addition of Secure Access to
Patient’s Records in A Tele-Referring Group. In IEEE-EMBS 2005: Proceed-
ings of the 27th IEEE EMBS Annual International Conference”, pages 308–317.”
IEEE, 2005.

131. M. Little. Transactions and Web Services. Communications of the ACM,MM
46(10):49–54, 2003.

132. T. Lodderstedt. Model Driven Security from UML Models to Access Control
Architectures. PhD thesis, Albert-Ludwigs-Universitat Freiburg im Breisgau,¨
2003.

133. T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A UML-Based Model-
ing Language for Model-Driven Security. In J.-M. Jéz´ equel, H. Hußmann, and´
S. Cook, editors, UML, volume 2460 of Lecture Notes in Computer Science,
pages 426–441. Springer, 2002.

134. P. Louridas. Some Guidelines for Non-repudiation Protocols. Computer Com-
munication Review, 30(4), October 2000.

135. Azzurri Ltd. JET Tutorial Part 1 (Introduction to JET) [online]., 2005. Avail-
able at: http://www.eclipse.org/articles/Article-JET/jet tutorial1.html [Ac-
cessed 4. October 2006].

136. M. Alam and R. Breu and M. Hafner. Modeling Permissions in a (U/X)ML
World. In IEEE ARES 2006. ISBN: 0-7695-2567-9.

137. K. Mantell. From UML to BPEL. Technical report, IBM-developerWorks,
2003.

138. O. Markowitch and Y. Roggeman. Probabilistic non-repudiation without
trusted third party. In Second Conference on Security in Communication Net-
works’99, Amalfi, Italy, 1999.

139. D. Masys, D. Baker, A. Butros, and K. E. Cowles. Giving patients access
to their medical records via the internet. Journal of the American Medical
Informatics Association, 9:181–191, 2002.

140. J. McDermott and C. Fox. Using abuse case models for security requirements
analysis. Computer Security Applications Conference, 1999.(ACSAC’99) Pro-
ceedings. 15th Annual, pages 55–64, 1999.

141. J. Mendling and M. Hafner. From Inter-Organizational Workflows to Process
Execution: Generating BPEL from WS-CDL. Journal of Enterprise Informa-
tion Management, 2006.

142. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC, 1996.

143. IBM & Microsoft. Security in a Web Services World: A Proposed Architec-
ture and Roadmap, A joint security whitepaper from IBM Corporation and
Microsoft Corporation. April 7, 2002, Version 1.0. Technical report, IBM &
Microsoft, 2002.

www.manaraa.com

References 239

144. J. A. Miller, M. Fan, A. P. Sheth, and K. J. Kochut. Security in Web-Based
Workflow Management Systems.

145. Ministerio de Administraciones Públicas. Methodology for Information Sys-
tems Risk Analysis and Management (MAGERIT version 2), 2006.

146. M. Casassa Mont, S. Pearson, and P. Bramhall. Towards Accountable Manage-
ment of Identity and Privacy: Sticky Policies and Enforceable Tracing Services.
In DEXA ’03: Proc. of the 14th Int. Workshop on Database and Expert Systems
App., page 377, Washington, DC, USA, 2003. IEEE Computer Society.

147. T. Moses. Core and hierarchical role based access control (RBAC) profile of
XACML v2.0. Oasis standard, OASIS, 2005.

148. E. Newcomer and G. Lomow. Understanding SOA with Web Services. Addison-
Wesley Professional, 2004.

149. OCG (Office of Government Commerce). Best Practice for Security Manage-
ment., 1999. The ITIL Infrastructure Library.

150. University of Southern California. RFC - 793 Transmission Control Protocol,
Darpa Internet Program, Protocol Specification, 1981.

151. OMG. MDA Guide Version 1.0.1, omg/2003-06-01. Technical report, The
OMG, 2003.

152. OMG. MOF 2.0/XMI Mapping, Version 2.1.1. Technical report, 2007.
153. The OMG. UML 2.0 OCL Specification, ptc/03-10-14. 2003.
154. The OMG. Meta Object Facility (MOF) 2.0 Core Specification. OMG Available

Specification, 2005.
155. Committee on Quality of Health Care in America. Inst. of Medicine. Crossing

the Quality Chasm: A New Health System for the 21st Century. Washington
DC Nat. Acad. Press, 2001.

156. M. O’Neill. Web Services Security. McGraw-Hill Osborne Media, 2003.
157. openArchitectureWare.org. openArchitectureWare [online]., 2005. Available

at: http://www.openarchitectureware.org/ [Accessed 19. February 2008].
158. Republik Österreich. Bundesgesetz uber elektronische Signaturen (Signaturge-¨

setz – SigG), 1999.
159. Cover Pages. Web Services Metadata Exchange (WS-MetadataExchange) for

Service Endpoints,
http://xml.coverpages.org/ni2004-03-05-a.html, 2008.

160. J. Park and R. Sandhu. The UCON ABC Usage Control Model. ACM Trans-
actions on Information and Systems Security, 7:128–174, 2004.

161. T. R. Peltier. Information security risk analysis. Auerbach, 2001.
162. C. Pfleeger and S. Pfleeger. Security in Computing. Prentice Hall, 2003.
163. F. Innerhofer-Oberperfler R. Breu and A. Yautsiukhin. Quantitative Assess-

ment of Enterprise Security Systems. submitted.
164. D. Raptis, T. Dimitrakos, B.A. Gran, and K. Stølen. The CORAS Approach

for Model-based Risk Management applied to e-Commerce Domain. In Proc.
CMS-2002, pages 169–181, 2002.

165. S. Rinderle and P. Dadam. Schema Evolution in Workflow Management Sys-
tems. Informatik Spektrum, 26(1):17–19, 2003. (in German).

166. A. Rodriguez, E. Fernandez-Medina, and M. Piattini. Capturing Security Re-
quirements in Business Processes Through a UML 2.0 Activity Diagrams Pro-
file. In Proc. ER Workshops 2006, pages 32–42, 2006.

167. J. Rosenberg and D. L. Remy. Securing Web Services with WS-Security: De-
mystifying WS-Security, WS-Policy, SAML, XML Signature, and XML En-
cryption. Sams Publishing, 2004.

www.manaraa.com

240 References

168. R. Ross, S. Katzke, A. Johnson, M. Swanson, G. Stoneburner, and A. L. Rogers.
Recommended Security Controls for Federal Information Systems. Technical
report, National Institute of Standards and Technology, 2005. NIST Special
Publication 800-53.

169. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control
models. IEEE Computer, 29(2), 1996.

170. R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for
role-based administration of roles. ACM Transactions on Information and
Systems Security (TISSEC), 1(2):105–135, 1999.

171. R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role Based Access
Control Models. IEEE Computer 29(2), IEEE Press, pages 18–47, 1996.

172. M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and
P. Sommerlad. Security Patterns : Integrating Security and Systems Engineer-
ing (Wiley Software Patterns Series). John Wiley & Sons, March 2006.

173. Joint NEMA/COCIR/JIRA Sec. and Priv. Committee. Break-Glass -
An Approach to Granting Emergency Access to Healthcare Systems.
http://www.nema.org/prod/med/security/.

174. E. Seidewitz. What Models Mean. IEEE Softw., 20(5):26–32, 2003.
175. Service Central de la Sécurité des Syst`´ emes d’Information. Expression of Needs`

and Identification of Safety Objectives (EBIOS). online, 1997.
176. A. Shabo, P. Vortman, and B. Robson. Who’s afraid of lifetime electronic

medical records? In Proceedings of the Towards Electronic Health Records con-
ference 2001., 2001.

177. S. Shah. Hacking Web Services (Internet Series). Charles River Media, 2006.
178. R. Shirey. Security Architecture for Internet Protocols: A Guide for Protocol

Designs and Standards, Internet Draft, November 1994.
179. G. Sindre and A. L. Opdahl. Eliciting security requirements with misuse cases.

Requirements Engineering, 10(1):34–44, January 2005.
180. T. Stahl and M. Volter.¨ Modellgetriebene Softwareentwicklung. dpunkt.verlag

GmbH, Heidelbeg, 1. auflage edition, 2005.
181. G. Stoneburner, A. Goguen, and A. Feringa. Risk Management Guide for Infor-

mation Technology Systems. National Institute of Standards and Technology,
special publication 800-30 edition, July 2002.

182. T. Straub. Usability Challenges of PKI. Master’s thesis, University of Darm-
stadt, Germany, 2005.

183. B. Suh and I. Han. The IS risk analysis based on a business model. Information
& Management, 41(2):149–158, December 2003.

184. Sun Microsystems, Inc. Sun’s XACML Implementation [online]., 2005. Avail-
able at: http://sunxacml.sourceforge.net/index.html [Accessed 19. February
2008].

185. F. Swiderski and W. Snyder. Threat Modeling. Microsoft Press, 2004.
186. T. Tedrick. How to exchange half a bit. In D. Chaum, editor, Advances in

Cryptology: Proceedings of Crypto 83, Advances in Cryptology: Proceedings of,
pages 147–151. Plenum Press, New York and London, 1984.

187. T. Tedrick. Fair exchange of secrets. In GG. R. Blakley and D. C. Chaum, ed-
itors, Advances in Cryptology: Proceedings of Crypto 84, volume 196 of Lecture
Notes in Computer Science, pages 134–138. Springer-Verlag, 1985.

188. The Apache Software Foundation. The Apache Ant Project, http://ant.
apache.org/.

www.manaraa.com

References 241

189. The Apache Software Foundation. Web Services Axis,
http://ws.apache.org/axis/.

190. The Eclipse Foundation. JDT - Java Development Tools,
http://www.eclipse.org/jdt/.

191. Integrating the Healthcare Enterprise. IHE, 2005, IT Infrastructure Techni-
cal Framework vol.1 (ITI TF-1) Integration Profiles [online]. Technical report,
2005. Available from: http://www.ihe.net/Technical Framework/upload/
ihe iti tf 2.0 vol1 FT 2005-08-15.pdf [Accessed 5. October 2006].

192. Integrating the Healthcare Enterprise. IHE, 2005, IT Infrastructure Tech-
nical Framework vol.1 (ITI TF-2) Transactions [online]. Technical report,
2005. Avaliable from: http://www.ihe.net/Technical Framework/upload/
ihe iti tf 2.0 vol2 FT 2005-08-15.pdf [Accessed 5. October 2006].

193. The OMG. UML 2.0 Infrastructure Specification, ptc/03-09-15. OMG Adopted
Specification, The OMG, 2003.

194. The OMG. MOF/QVT Final Adopted Specification, http://www.omg.org/
docs/ptc/05-11-01.pdf, volume ptc/05-11-01. 2005.ff

195. The OMG. Unified Modeling Language: Superstructure, version 2.0, formal/05-
07-04. Technical report, The OMG, 2005.

196. The OMG. Common Object Request Broker Architecture (CORBA) Specifi-
cation, Version 3.1. OMG Available Specification, 2008.

197. M. R. Thompson, A. Essiari, and S. Mudumbai. Certificate-based authorization
policy in a PKI environment. ACM Trans. Inf. Syst. Secur., 6(4):566–588, 2003.

198. Sozialversicherungs-Chipkarten Betriebs und Errichtungsgesellschaft m.b.H.
Stufenmodell fur die Anforderung undff¨ Übermittlung von Patienten-
daten [online]., 2005. Available at: http://www.chipkarte.at/esvapps/page/
page.jsp?p pageid=220&p menuid=59290&p id=5 [Accessed 4. October
2006].

199. A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour.
In 5th IEEE International Symposium of Requirements Engineering, pages
249 – 262, 2001.

200. H. M. W. Verbeek, A. Hirnschall, and W. M. P. van der Aalst. XRL/Flower:
Supporting Interorganizational Workflows using XRL/Petri-net Technology. In
Web Services, E-Business, and the Semantic Web, CAiSE 2002 International
Workshop (WES 2002), pages 93–108, 2002.

201. J. Viehmann. Fair Non-Repudiation. M.s. thesis, Dept. Computing Science,
University of Innsbruck, 2007.

202. G. Vogt. Multiple Authorization – A Model and Arch. for Increased, Practical
Security. In Proc. of the IFIP/IEEE 8th Int. Symp. on Integrated Network
Management (IM 2003), pages 109–112, Colorado Springs, USA, March 2003.
IFIP/IEEE, Kluwer Academic Publishers.

203. M. Volter. What is a Domain Specific Language? Posted on Blog Friday, Septem-¨
ber 28, 2007. URL: http://voelterblog.blogspot.com/2007 09 01 archive.html.

204. W3C. Web Services Addressing (WS-Addressing), W3C Member Submission
10 August 2004. Technical report, W3C, 2004.

205. w3.org. Hypertext Transfer Protocol – HTTP/1.1, 1999.
206. J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC - A Workflow Secu-

rity Model Incorporating Controlled Overriding of Constraints. International
Journal of Cooperative Information Systems, 12(4):455–485, 2003.

www.manaraa.com

242 References

207. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, 2005.

208. Wikipedia. Elektronische Gesundheitskarte [online]., 2008. Available at:
http://de.wikipedia.org/wiki/Elektronische Gesundheitskarte [Last Modified
14 July 2008].

209. C. Wolter, H. Plate, and C. Hebert. Collaborative Workflow Management for
eGovernment. In DEXA ’07: Proceedings of the 18th International Conference
on Database and Expert Systems Applications, pages 845–849, Washington,
DC, USA, 2007. IEEE Computer Society.

210. C. Wolter and A. Schaad. Modeling of task-based authorization constraints in
BPMN. In Business Process Management, volume Volume 4714/2007, pages
64–79. Springer Berlin/Heidelberg, 2007.

211. C. Wolter, A. Schaad, and C. Meinel. Task-based entailment constraints for
basic workflow patterns. In SACMAT ’08: Proceedings of the 13th ACM sym-
posium on Access control models and technologies, pages 51–60, New York, NY,
USA, 2008. ACM.

212. F. Wozak, E. Ammenwerth, M. Breu, R. Penz, T. Schabetsberger, R. Vogl, and
M. Wurz. Medical Data GRIDs as Approach towards Secure Cross Enterprise
Document Sharing (Based on IHE XDS). Studies in Health Technology and
Informatics, 124, 2006.

213. J. Zhou and D. Gollmann. A Fair Non-repudiation Protocol. Proceedings of
the IEEE Symposium on Research in Security and Privacy, pages 55–61, 1996.

www.manaraa.com

Index

Sectet Model Views, 96
Sectet-Reference Architecture, 121
Sectino, 66
4-Eyes-Principle, 37, 183
4-step model, 192

Security Micro-process, 81

Access Control, 86
Access Control Policies, 100
Advanced Security Policies, 36, 93, 100,

162
Apache Ant, 155
Apache Axsi, 42
application level, 74
Architectural Blueprint, 121
Attacks, 38
Authentication, 125
Authorization Policy Enforcement, 216
Availability, 161

Baseline Protection, 89
Basic Security Policies, 93, 99, 114, 116,

122
Basic Security Policy, 31
BPML, 24
BPSS, 25
Break-Glass Policy, 37, 182
business level, 74

Case Study, 200
Choreography, 23, 24
Code Artifacts, 55
Code Generation, 154

Component Configuration, 130
Computer security, 27
Confidentiality, 93, 127
Confidentiality Policy, 99
Cross-Enterprise Document Sharing,

191
Cryptographic Policy Enforcement, 215

Delegation of Rights, 36
Delegation Policies, 177
Dependency Graph, 83
Deployment Process, 157
Description Layer, 22
Discovery Layer, 22
Discretionary Access Control, 33
Document Model, 98, 107, 172
Domain, 52, 53
Domain Architecture, 47, 56
Domain Definition, 93
Domain Policies, 100
Domain Role, 77
Domain Specific Language, 93
Domain Specific Languages, 52
DSL Meta-models, 100
Dynamic Access Control Policy, 36
Dynamic Constraints, 164
Dynamic RBAC, 165

e-government, 65
E-Health Initiative, 191
ebXML, 24
Eclipse IDE, 155
Electronic Health Record, 190
Engineering Process, 156

www.manaraa.com

244 Index

Formal Approaches, 90
Framework, 8, 57
Functional Meta Model, 75
Functional System View, 73, 74, 198

Generation of Security Artefacts, 141
Generation of Services Artefacts, 142
Global Business Process, 76
Global Functional Meta-model, 75
Global Functional Model, 199
Global System Meta Model, 75
Global View, 74
Global Workflow Model, 103
Global Worklfow, 94

net, 192, 193
Access Model, 211
Application Domain, 208
Architectural Concept, 194
Authentication Process, 214
Authorization Process, 214
Basic Use Cases, 197
Default Access Control Policies, 212
Design Criteria, 194
Document Model, 210
Interface Model, 210
Interface View, 210
Model Views, 208
Organizational Setting, 193
Patient Privacy Policies, 212
Problem Domain, 207
Project Mission, 192
Role Model, 210
Security Analysis, 198
Security Architecture, 213
Security Concept, 205
Security Domain, 208
Target Architecture, 195
Use Cases Phase 2a, 212

Horizontal Transformations, 54
HTTP, 18

Inbound Policy File, 143
Information, 75
Institution, 75
institutions, 77
Integrity, 93, 127
Integrity Policy, 99
inter-organizational workflows, 8, 65

Interface Model, 98, 110, 111
Interface View, 97, 107

Level of Abstraction, 74
Level of Interaction, 74
Local Business Process, 77
Local Component, 78
Local Functional Meta-model, 77
Local System Meta Model, 75
Local View, 74
Local Workflow Model, 105
Local Worklfow, 94
Location, 78
Logging Unit, 126

Mandatory Access Control, 34
Messaging Layer, 21
Meta-model Based Transformations,

150
Meta-Object Facility, 48
Model Driven Architecture, 50
Model Driven Security, 8, 51, 57
Model Driven Security Engineering, 5
Model Driven Software Development,

47, 49
Model-to-Code Transformation, 54
Model-to-model Transformation, 55
Modeling Component, 8
Modularity, 72

Node, 78
Non-repudiation, 93, 128
Non-repudiation Policy, 99

Orchestration, 23
Outbound Policy Files, 144

Permission, 87
Permission Assignment Constraints, 164
physical level, 74
Policy Configuration Engine, 125
Policy Decision Point, 126
Policy Distribution, 219
Policy Enforcement Point, 123, 126
Policy Generation, 217
Privacy Policies, 170
Privacy Policy, 38
Problem Space, 51
ProSecO, 8, 71
Public Key Infrastructure, 126

www.manaraa.com

Index 245

Qualified Signature, 37, 70, 183
Quality of Service Layer, 22

RBAC, 162
Realization Process, 155
Reference Architecture, 9, 52, 122
Requirements Engineering, 73
Rights Delegation, 167
Risk, 80
Risk Analysis, 85
Role, 87
Role Based Access Control, 34
Role Model, 97, 108, 172

SAML, 44
scenario, 65
Sectet, 8
Sectet-PL, 164
Security Analysis, 38, 71
Security Components, 54, 123
Security Control, 40, 80
Security Control Engineering, 86
Security Layer, 22
Security Management, 89
Security Meta-model, 79
Security Micro-process, 73
Security Models, 32
Security Objective, 79, 201
Security Objectives, 29, 82, 200
Security Objetives, 93
Security Policies, 98
Security Policy, 30
Security Requirement, 38, 80
Security Requirements, 30, 69, 202
Security Requirements Engineering, 83
Security Transformations, 143
Service, 76
Service Components, 54, 123
Service Oriented Architecture, 3
Service Oriented Architectures, 15
Services Composition Layer, 23
Services Transformations, 145
Session Engine, 126
SOAP, 18
Software Process, 90
Solution Space, 51
Standards, 140
Static RBAC, 165

Supporting Security Components, 126

Target Architecture, 52, 54
TCP/IP, 18
Template Based Transformations, 149
Threat, 39, 80
Tool Chain, 153
Traceability, 73
Transformation Component, 9
Transformations, 141, 182
Transport Layer, 21

UCONABC , 35, 208, 213
UDDI, 18, 20
Unified Modeling Language, 48
Usage Control, 183
Usage Control Policies, 100
Usage Control Policy, 37
Use Cases, 68

Vertical Transformations, 55
Virtual Enterprise, 15
Vulnerability, 39

Web Services, 17
Web Services Security Standards, 23,

41, 44
Web Services Specification Stack, 20
Workflow Engine, 123
Workflow View, 97
WS-AtomicTransactions, 23
WS-BPEL, 24
WS-BusinessActivity, 23
WS-Coordination, 23
WS-Federation, 45
WS-ReliableMessaging, 22
WS-SecureConversation, 45
WS-Security, 41
WS-Trust, 45
WSDL, 18, 20
WSS4J, 42

X.509 certificate, 123
XACML, 44, 174
XACML-data-flow model, 121
XKMS, 45
XML-Digital Signature, 42
XML-Encryption, 42
XPath, 181

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.03333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.01667
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [7200.000 7200.000]
>> setpagedevice

